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This Publication is intended 1o assist in meeting the metrology requirements of National Aero-
nautics and Space Administration (NASA) Quality Assurance (QA) handbooks by system cord rac-
tors, The Publication is oriented to mission-imposed requirements generated by long-term space
operations. However, it is equally valid for use in all NASA programs.
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1.1 Purpose

Methodologies and techniques acceptable in fulfilling metrology, calibration, and measurement
process quality requirements for NASA programs are outlined in this Publication. The intention of
this Publication is to aid NASA engineers and systems contractors in the design, implementation,
and operation of metrology, calibration, and measurement systems. It is also intended as a re-

source to guide NASA personnel in the uniform evaluation of such systems supplied or operated
by contractors,

1.2  Applicability

This Publication references NASA Handbooks, and is consistent with them, The measurement
quality recommendations are at a high level and technical information is generic, It is recom-
mended that each project determine functional requirements, performance specifications, and re-
lated requirements for the measurement activity, Suppliers may use this document as a resource
to prepare documentation for doing tasks described in this document.

13  Scope

A broad framework of concepts and practices to use with other established procedures of NASA is
provided, The Publication addresses the entire measurement process, where the term “process”
Includes activities from definition of measurement requirements through operations that provide
data for decisions. NASA’s programs cover a broad range from short-term ground-based research
through long-term flight science investigations, Common to all programs are data used for deci-
sfons (accept a system, launch a spacecraft) and data used for’ scientific investigations
(composition of a planet’s atmosphere, global warming) to establish scientific facts,

Measurement systems include hardware and software put in place to measure
physical phenomena. In their simplest form, measurement systems can be consid-
ered to be a logical arrangement of equipment from one or more fabricators, pos-
sibly coupled with application software, integrated within a process so physical
phenomena such as pressure, temperature, force, etc., can be measured, quanti-
fled, and presented.

Specifically, this Publication is not limited to test equipment calibration and measurement stan-
dards activities. To provide a realistic assessment of data quality, the total process should be con-
sidered. The measurement process is covered from a high level through more detailed discussions
of key elements within the process. Emphasis is given to the flowdown of project requirements to
measurement system requirements, then through the activities that will provide measurements
with known quality that will meet these requirements.

For many years, metrologists, calibration and repair specialists, measurement system designers,
and instrumentation specialists have utilized widely-known techniques which are conceptually




simple and straight forward. With the proliferation of computing technology and philosophical
changes occurring in quality management, the field of metrology is undergoing evolutionary and
revolutionary change. Methodology for determining measurement uncertainty is becoming ex-
tremely complex in terms of system and component error analysis and manipulation of equations
that require a good foundation in mathematics.

Total Quality Management (T@M) is becoming the way of doing business, The new environment is
characterized by tncreased competition, scarcer resources, and a need to deliver high quality
products and services on schedule, with as little risk and at the lowest cost possible. Emphasis is
on doing the right thing the right way with continuous improvement, This forces increased un-
derstanding of what a measurement implies and the decisions based on the measurement. This
document is intended as a resource to help both management and technical personnel gain the
tools and knowledge necessary to achieve acceptable quality in measurement processes,

Several changes from “business as usual” in the metrology community are reflected in the efforts
underway to implement adaptations of the 1S0 9000 series as replacements to the NHB 5300.4
series documents, In addition, NASA is working toward compliance with The U. S, National
Standard (ANS/NCSL 2540-1 /1S0 Guide 25) as it effects general requirements for calibration lab-
oratories and measuring and test equipment. The 1ISO/TAG4 /WG3 Guide to the Expression of
Uncertainty in Measurement and the interpretation provided in NIST Technical Note 1297 are
likewise being considered as changes from “business as usual”,

The complete implementation of the above philosophies has not yet taken place at
the time of publishing this document. The developing strategies are imminent, but
present a “moving target” for the authors, Therefore, the core of this Publication
concentrates on the presentation of traditional measurement methodologies with
enhanced reinforcement of good engineering practices. As the practices of the
measurement community evolve, the techniques presented within will be valuable
to all who are responsible for the quality of the measurement,

Readers will vary from managers to personnel concerned with detailed activities. To help the
reader in using this Publication, the following sections are suggested for different interests:

«  Section 2 (Quality Recommendations) defines quality recommendations in high-level terms,
The total measurement process is emphasized, This section is intended for all personnel,

«  Section 3 (Measurement Requirements) describes the derivation of measurement require-
ments and includes the entire measurement process, Managers who depend on measure-
ments should scan this section, especially the ten stages of Section 3,2,1 and the example
in Section 3.2,7, Software is becoming increasingly important in measurement processes,
and is addressed in Section S.5. Personnel responsible for defining measurement re-
quirements should read this section in detail, Other measurement persons should be fa-
millar with this section,

Sections 4 through 6 detail the key elements of the measurement process. Examples of measure-
ment systems are included, These sections are intended for members of the measurement com-
munity who will design, implement, and operate the measurement process.

«  Section 4 (Measurement System Design) presents a systematic design approach for mea-
surement systems, identifies the elemental errors associated with a measurement process,
reviews methods for combining errors, and provides the specific steps needed to develop
and evaluate a measurement process.




Section 5 (Measurement Traceability) provides the foundation necessary for establishing
traceability to measurement standards. Included are methods and techniques to asslst in
the traceable transfer of known values to final data.

Section 6 (Calibration Intervals) discusses concepts, principles, and methods for the es-
tablishment and adjustment of intervals between calibrations for test and measurement
equipment,

Section 7 (Operational Requirements) deals with the operations phase of the measurement
process at a higher level than that of Sections 3 through 6. This section is primarily in-
tended for operational personnel who must provide data with known quality. Managers
should scan Section 7.1, which discusses quality.

Section 8 (Recommendations for Waiver/Deviation Requests) should be read by managers
and measurement personnel,

The appendices primarily delve into state-of-the-art innovations and techniques for error analysis,
development of statistical measurement process control, optimization of calibration recall sys-
tems, and evaluation of measurement uncertainty. The techniques presented in these appendices
will likewise be valuable to the establishment of quality measurements,

Appendix A (Definitions) contains the terms used in this Publication since it is recognized
there are different definitions, connotations, and preferences for specific terms used in the
aerospace and metrology communities,

Appendix B (Mathematical Methods for Optimal Recall Systems) provides the mathematical
and detailed algorithmic methodology needed to implement optimal calibration interval
analysis systems as described in Section 6. This appendix should be read by technical
specialists responsible for calibration interval system design and development,

Appendix C (Test and Calibration Hierarchy Modeling) provides mathematical methods and
techniques to link each level of the test and calibration support hierarchy in an integrated
model, These methods enable analysis of costs and benefits for both summary and de-
tailed visibility at each level of the hierarchy, This appendix should be read by technical
specialists responsible for calibration interval system design and development,

Appendix D (Statistical Measurement Process Control (SMPC) Methodology Development)
describes statistical measurement process control methodology in generalized mathemati-
cal terms. The SMPC methodology overcomes traditional SPC methods which are difficult
to implement in remote environments, This appendix is not intended for the casual
reader, but should be read by technical specialists responsible for developing information
regarding the accuracy of the monitoring process. The methodology is especially useful in
cases where astronomical or terrestrial standards are employed as monitoring references,
and for reducing dependence on external calibration in remote environments,

Appendix E (Error Analysis Methods) provides the measurement system designer with
mathematically invigorating tools to develop measurement system error models and ana-
lyze measurement system errors.

Appendix F (Practical Method for Analysis of Uncertainty Propagation) describes an evolu-
tionary non-traditional uncertainty analysis methodology that yields unambiguous re-
sults. The term “practical” suggests that the methodology is usable or relevant to user
objectives, such as equipment tolerancing or decision risk management. In using this
methodology, rigorous construction of statistical distributions for each measurement




component is required to assess measurement uncertainty. Application software is
presently being developed for user-interactive computer workstations.

Appendix G (Determining Uncertainty of an Example Digital Temperature Measurement
System) is founded on an example temperature measurement system given in Section 4. It
is very detailed in the identification and analysis of error sources to determine the
measurement uncertainty and should be read by technical specialists responsible for the

design of measurement systems. The methodologies presented parallel those provided in
NIST Technical Note 1297 and the 1SO/TAG4 /WG3 Guide t0 the Expression of Uncertainty
tn Measurement,.

Appendix H (The International System of Units (S)) contains traditional information on the
metric system, It is contained in this Publication for the convenience of all readers,

Acronyms are defined at the beginning of this document, A reference section is at the end,

Throughout this Publication, references are made to “space-based” activities, For
the purpose of definition, “space-based” includes all activiles that are not earth-
based, i.e. satellites, manned on-orbit platforms, unmanned deep-space probes,
planet-based apparatus, etc.—all are included in the term “space-based” as used
in this document,
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Measurement quality can be described in terms of our knowledge of the factors that contribute to
the differences between the measurement and the measurand, and the extent of our efforts to de-

Introduction

scribe and/or correct those differences.

Two attributes of a measurement provide the quality necessary for decisions:

5

Measurement quality assures that actions taken based on measurement data are only negligibly
affected by measurement errors. The complete measurement process should be included in the
objective definition of measurement quality. The following issues should be considered when

The measurement must be traceable to the National Institute of Standards and
Technology (NIST), an intrinsic standard, or to a consensus standard accepted by contrac-
tual or similar documents.

Measurement uncertainty must be realistically estimated and controlled throughout the
measurement process.

making a measurement,

2.2

Measurement quality requirements are applicable to the measurement processes associated with

The measurement process quality should be consistent with the decision’s need for
measurement data, The measurement process should be consistent with economic
factors in providing adequate quality and avoid an over specified, expensive process.

Measurement system reliability design requirements should be defined and speci-
fled so that design objectives are clearly understood,

Uncertainty is a parameter of the complete measurement process, not a parameter
limited to instruments used in the process,

Control of uncertainty of limited parts of the process, such as calibration of elec-
tronic instruments, is a necessary condition for objective definition of uncertainty
but, clearly, is not a sufficient condition,

Uncertainty of a chain or sequence of measurements grows progressively through
the sequence.

Uncertainty in the accuracy ascribed by calibration to a measuring attribute grows
with time passed since calibration.

Measurement Functions

the following functions:

1. Activities where test equipment accuracy is essential for the safety of personnel or equip-
ment.

2, Qualification, calibration, inspection, and maintenance of flight hardware,




3. Acceptance testing of new instrumentation.

4, Research and development activities, testing, or special applications where the specifica-
tion/end products of the activities are accuracy sensitive.

5. Telecommunication, transmission, and test equipment where exact signal interfaces and
circuit confirmations are essential,

Measurement processes used for purposes other than those specified above are considered to
have uncontrolled uncertainty and should be limited to:

1, Applications where substantiated measurement accuracy is not required.

2, “Indication only” purposes of nonhazardous and noncritical applications.

2.3  Measurement Quality Recommendations

2.3.1 Requirement Definition

The measurement quality requirement should be objectively defined early in the activity and drive
the measurement process design.

Early definition of the measurement uncertainty and confidence level should be done so the mea-
surement process s responsive to its objective. The measurement process cannot be deftned by

organizations in the measurement disciplines until the measurement quality requirement, trace-
able to the decision, is known.

2.3.2 Requirement Traceability

The measurement quality requirement should be traceable to the decision need that will use the
data from the measurement.

The requirement should be responsive to the user of the data, and should not be defined only by
organizations in the measurement or metrology disciplines,
2.3.3 Implementation Cost

The measurement quality implementation should be cost effective in providing the needed quality,
but not an over-specified quality.

The implementation should define the decision risk to provide adequate quality at the least cost,
Some measurements may have a broad uncertainty range, so quality can be implemented eco-
nomically. Critical decisions with high risk may need measurement uncertainties that are difficult
to achieve, with corresponding higher costs.

2.3.4 Uncertainty Identification

The measurement should be treated as a process, with all contributors to bias and precision errors
(from the sensor, through data reduction) identified. Uncertainties should reflect a realistic
representation of the process so the process uncertainty, and prediction for growth, IS meaningful.




Uncertainties must be a realistic representation of the actual physical measurement process.
Sensors may disturb the measurand. Thus, they may not provide an accurate represeniation of
the measurand, and so may not provide the correct data needed for a good decision. In such a
case, uncertainties from both the sensor intrusion effects, and the relationship of the sensor out-
put to the data reduction equations, are necessary to correctly define the complete uncertainty.
The effect of software must be included. Operator characteristics or environmental changes are
an important source of uncertainty, so must be included. From the planning viewpoint, con-
sideration of all uncertainties early In the activity is essential to allow the total uncertainty budget
to be allocated to the measurement process elements.

Since uncertainties grow with time since test or calibration, measurement decision risk also in-
creases with time since calibration, Thts is the underlying motivation for recalibrating and’
retesting regularly. When uncertainty grows beyond predicted limits, insidious “soft” failures oc-
cur in the measurement system, “Sofi” failures cause a measurement device to generate data be-
yond stated uncertainty limits, Usually these failures go undetected by the user and/or operator.

2.3.5 Design Documentation

The measurement process design should be documented in written form with an auditable content
so that it may be used during the operations phase.

Usually, design documentation will be used by persons in the operation and data reduction
phases who did not design or develop the measurement process, The documentation will help op-
eration personnel to monitor uncertainties throughout the period of the measurement, so any un-
certainty growth with time can be better defined, Characteristics of the operation phase, which
may be under time pressure to correct failures, should be considered. The design documentation
also should be auditable. Extensive documentation is not necessarily needed. For instance, a
short-term research activity might be documented as a single-page memo that summarized the
measurement process, its uncertainties, and included measurement quality traceability. A long-
term space flight activity will need extensive formal documentation and should take into consid-
eration use of alternate personnel during the flight duration,

2.3.6 Design Review

The measurement process, design should pass a rev few before implementation of the measurement
process with representation from technically qualified persons and from the data user organization.

A review should be held before the implementation of the measurement process, The purpose of
the review is to ensure that all design requirements have been addressed, The review members
should include persons technically competent in relevant disciplines (metrology, sensors, soft-
ware, etc.), and persons from the user organization, This review could be a half-hour informal
meeting to a formal preliminary design review, depending on the scope of the measurement and
the phase of the activity. Despite the level of formality, every measurement process should be
subjected to some review before implementation, This recommendation is intended to assure both
technical competence and satisfaction of the decision organization,

2.3.7  Quality Control

The measurement quality should be monitored and evaluated throughout the data acquisition activ-
ity of the operations phase. This should be done to establish that the uncertainty ts realistically es-




timated, controlled within the specified range, and out-of-control exceptions are objectively identi-
Jied.

Objective definition of data quality is needed to support the decision process, Rigorous monitoring
is necessary to provide the objective definition,

2.3.8 Quality Documentation

The total measurement process should be documented so that decisions based on measurement re-
sults can be objectively evaluated.

The measurement process should be documented to the extent necessary to enable an objective
estimate of risks associated with decisions based on measurement results.

24  Relevant Quality Provisions

Quiality provisions relevant to the above measurement quality recommendations are found in the
following NASA Handbooks:

« NHB 5300.4 [1 B), “Quality Program Provisions for Aeronautical and Space System
Contractors”

« NHB 5300.4(1 C), “Inspection System Provisions for Aeronautical and Space System
Materials, Parts, Components and Services”

« NHB 5300.4(1 D-2), “Safety, Reliability, Maintainability and Quality Provisions for the
Space Shuttle Program”

« NHB 4200,1, “NASA Equipment Management Manual”




31 Objectives of the Measurement Process

To assure adequate space system performance, it is essential that technical requirements be de-
veloped, defined and documented carefully. Clearly defined measurement requirements lead to
the high reliability and quality needed to assure successful system performance and mission
achievement. They assure that decisions (including establishing scientific fact from measure-
ments) are based on valid information and that only acceptable end items proceed from suppliers
into flight hardware and support systems, Many of these items are the sensors, detectors, meters,
sources, generators, loads, amplifiers, filters, etc., integrated to form the measurement system of
a space-based system. The definition and understanding of measurement processes and their re-
quirements raise such questions as:

+ What is a measurement? What characterizes it?

« Why is the measurement being made?

« What decisions will be made from the measurement?

« What performance requirements do the measurements seek to validate?

« What measurement and calibration system design requirements will support the perfor-
mance requirements?

+ What level of confidence is needed to assure that measurements yield reliable data and
that the risks of using inadequate data are under control?

MEASUREMENT — The set of operations having the object of determining the value
of a quantity.

Measurements are subject to varying degrees of uncertainty. The uncertainties need to be esti-
mated, From the estimate, the validity of the measurement can be assessed, the risks associated

with decisions based on these measurements quantified, and corrective actions taken to control
growth in the measurement uncertainty.

Measurements provide data from which decisions are made:
« To continue or stop a process
« To accept or reject a product
« “To rework or complete a design
« To take corrective action or withhold it

o To establish scientific fact,

The more critical the decision, the more critical the data. The more critical the
data, the more critical the measurement,




Hardware attribute measurements should be made during, development to evaluate. expected
system performance capabilities and the tolerance limits within which satisfactory performance is
assured. Other measurements, made during the development stage, confirm performance capabil-
ities and tolerances after production and before product delivery, Later, measurements are made
by the end user during acceptance tests, before launch or deployment, during deployment exer-
cises, and following mission completion. These tests and measurements, in one way or another,
involve decisions made to confirm compliance of the hardware with documented performance
specifications,

Measurements made during development create performance requirements (speci-
fications) from which other (production, acceptance, deployment and post mission)
measurement requirements emerge,

All valid measurement processes call for specificity of:
« Measurement parameters
«  Parameter ranges
+ Allocation and control of uncertainties
« Time limits to which the requirements apply
«  Environments in which they will operate,

These characteristics are used to establish the measurement control limits and design require-
ments for both measurement and calibration systems,

Determination and control of measurement process uncertainty and its relation to hardware at-
tribute tolerances is a way to define and control risks taken during decision processes,

The objective of the design and control of measurement processes is to manage the
risks taken in making decisions based on measurement data.

The objective of the measurement process for space systems is to monitor the integrity of the
performance parameters of space hardware, instrumentation and ground support equipment, and
to allow sound decisions for taking actions. The objective of calibration is to determine initial bias
errors, correct for. these, “and then to monitor and control the growth of measurement uncertainty.
This assures that decisions being made about the hardware from the measurement data are
made within acceptable risk limits.

‘IWO principles of the measurement activity should be considered:

PRINCIPLE 1 — Measurements only estimate the value of the quantity being mea-
sured, There is always some uncertainty between the value of the measurand and
the data representing the measured quantity. The uncertainty may be very small,
such as the case of the measurement of a one volt standard by a higher-level
standard, but the uncertainty always exists. The uncertainty must be estimated
and controlled to provide a measurement with known quality,




PRINCIPLE 2 — Measurements are made to support decisions' or establish facts, If
measurement data are not used in a decision, the measurement is unnecessary.

MEASUREMENT

DECISION l

A decision must be based on data with known quality so measurement data errors will have only
a negligible effect on the decision, Measurement quality has two attributes: (1) the measurement
must be traceable, and (2) the measurement must have a realistic estimate of its uncertainty. The
“realistic estimate of uncertainty” attribute leads to a third principle:

uncertainty must be included,

PRINCIPLE 3 — Every element of the measurement process that contributes to the

3.2 Defining Measurement Requirements

3.2.1 Measurement Requirements Definition Sequence

Determining measurement process requirements can be viewed as a ten-stage sequence that

flows down as follows:

STAGE 1 — MISSION PROFILE

measurement data?

Define the objectives of the mission, What is to be accomplished? What reliability
is needed and what confidence levels are sought for decisions to be made from the

STAGE 2 — SYSTEM PERFORMANCE PROFILE

fined.

Define the needed system capability and performance envelopes needed to ac-
complish the Mission Profile. Reliability targets and confidence levels must be de-

The use of the term “decistons™ 10 INclude scientific data, as another use of measurement data, is shown here.




STAGE 3 — SYSTEM PERFORMANCE ATTRIBUTES

Define the functions and features of the system that describe the System’s
Performance profile. Performance requirements must be stated in terms of accept-
able system hardware attribute values and operational reliability.

STAGE 4 — COMPONENT PERFORMANCE ATTRIBUTES

Define the functions and features of each component of the system that combine
to describe the System’s Performance Attributes. Performance requirements must
be stated in terms of acceptable component attribute values and operational reli-
ability.

STAGE 5 — MEASUREMENT PARAMETERS

Define the measurable characteristics that describe component and/or system
performance attributes. Measurement parameter tolerances and measurement
risks (confidence levels) must be defined to match system” and/or component tol-
erances and operational reliability.

STAGE 6 — MEASUREMENT PROCESS REQUIREMENTS

Define the measurement parameter values, ranges and tolerances, uncertainty
limits, confidence levels, and time between measurement limits (test intervals) that
match mission, system, and component performance profiles (Stages 2, 3 and 4)
and the measurement parameter requirements (Stage 5.)

STAGE 7 — MEASUREMENT SYSTEM DESIGNS

Define the engineering activities to integrate hardware and software components
into measurement systems that meet the Measurement Process Requirements,
Definition must include design of measurement techniques and processes to as-
sure data integrity.

STAGE 8 — CALIBRATION PROCESS REQUIREMENTS

Define the calibration measurement parameter values, ranges, uncertainty limits,
confidence levels, and recalibration time limits (calibration intervals) that match
measurement system performance requirements to detect and correct for sys-
tematic errors and/or to control uncertainty growth,




STAGE 9 — CALIBRATION SYSTEM DESIGNS

Define the integration of sensors, transducers, detectors, meters, sources, genera-
tors, loads, amplifiers, levers, attenuators, restrictors, filters, switches, valves,
etc., into calibration systems that meet the Calibration Process Requirements.
Definition must include design of calibration techniques and processes to assure
data integrity.

STAGE 10 — MEASUREMENT TRACEABILITY REQUIREMENTS

Define the progressive chain of calibration process requirements and designs that
provide continuous reference to national and international systems of measure-
ment from which internationally harmonized systems measurement process con-
trol is assured.

Stages 1 through 4 describe the performance requirements of the complete system and each of its
parts. These are the system and component capabilities converted to written specifications essen-
tial to successful mission achievement. Stages 5 and 6 apply the measurement parameters de-
rived during development that characterize the attributes of the hardware, Because of NASA and
contractor technical and management objectives, Stages 5 and 6 are the critical efforts that estab-
lish the technical objectives and requirements that the measurement process designs shall meet,

The output of Stage 6, Measurement Process Requirements describes:
+ Measurement parameters —(voltage, pressure, vacuum, temperature, etc.)
«  Values and range —(3- 10 volts, 130 to 280 pascal, O to -235 degrees celstus, etc.)
«  Frequency/spectra range -- (18 to 20 KHz, 10 to 120 nanometers, 18 to 26 GHz, etc.)
o Uncertainty limit — (£0. 1940 full scale, *0,005 “C, etc.)
«  Confidence level — (3 standard deviations, 99.73% confidence limits. 2 o, etc.)

« Time limit — (one flight, six months, five cycles, etc.) for which the uncertainties are not to
be exceeded at the confidence levels given,

Stage 7, Measurement System Design, is part of a larger system design activity that focuses on
the measurement process, Engineering analysis of the measurement process is done to allocate
performance to the system components, Section 4 describes detailed techniques used during de-

sign. Also, in Stage 7, provisions for testing and calibration are included in the measurement pro-
cess.

Stages 8 through 10 are the efforts directed to establishing the calibration and measurement
traceability capabilities needed to support the operational measurement system, These matters
are discussed in Section 5. Fundamental to calibration and measurement traceability is the con-
trol of measurement uncertainty, which in turn is controlled by design (Stage 7 & 9) and the es-
tablishment and adjustment of calibration intervals. Section 6 deals with this subject,




In the ten-stage flowdown of determining measurement process requirements, two aspects are
indigenous to the process. They ‘are, the underlying operational requirements and the special cir-
cumstances of state-of-the-art limits and practicality where a waiver or deviation from standard
requirements Is prudent, These matters are covered in Section 7 and 8 respectively.

3.2.2 System Characteristics and Measurement Parameters

To get measurement process requirements at Stage 6 of the definition sequence, Stages 1 through
4 need to be examined to determine the characteristics (values, tolerances, etc.) of the materials,
articles, processes and experiments.

Ofen, characteristic studies are done, These studies:
+ Determine theoretical performance capabilities
« Estimate performance degradation over time
« Establish test attributes
« Allocate tolerances at specific measurement sites
« Establish measurement conditions
« Identify where measurements will be made
»  Show the confidence levels needed for measurement decisions,

These characteristics are often in system parameter documents or their equivalent, These are the
characteristics that affect system functions, features, interchangeability, coordination, reliability,
quality and safety. Characteristics must be described in enough objective detail to include the
performance tolerance limits within which the wanted performance lies, or beyond which unsafe
or inadequate performance lies, From these article or process characteristics, Stage 5 defines
measurement parameters that translate the defined characteristics into measurable terms. These
are often the same phenomena, such as temperature or voltage, but they also include characteris-
tics that are only representations of the hardware feature.

For those articles that form a system assembly process, candidate measurement parameters that
represent performance characteristics include the following

+ Power inputs needed for article operation
« Signal inputs to emulate interactive hardware operations

«  Output signals from the article (especially those parameters that measure nonlinear out-
puts near specification limits, those outputs sensitive to other component parameters,
and those outputs sensitive to two or more inputs that may interact)

« Measurements to control or monitor the process or progress of the article through a series
of tests.

More information than just characteristics, values and tolerances is needed to define measure-
ment requirements, The environment in which the measurements will be done needs to be identi -
fled in detail, Is it hostile to the measuring systems? What are the pressures, temperatures, hu-
midity, radiation levels, sound intensity, etc., at which measurements will be done? It will be im-
possible to do uncertainty analyses without this knowledge, Also, information is needed regarding




the intended sites where the measurements will happen and whether they are remote, accessible
to human contact. etc.

3.2.3 Establishing Measurement Classifications

Another facet of defining measurement requirements calls for consideration of the relative impor-
tance of all measurement processes involved in a given program or mission, Indicators of impor-
tance are useful in identifying confidence level requirements on measurement uncertainties in a
program or mission.

The greater the importance of the decision, the higher the confidence the decision
makers need in their measurement data, Therefore, important measurement data
must be obtained at high confidence levels.

The importance of measurements can be classified, first, to the importance of their application
(mission, experiment, fabrication process, inspection, fault analysis, etc.) A second classification,
complimentary to the first, would involve the degree of difficulty in the measurement process, es-
pecially as #t relates to the measurement uncertainties and sensitivities needed versus the capa-
bility, or state-of-the-art, of the measurement systems.

3.2.3.1 Criticality of Application

NASA Handbook 5300.4 (ID-2), Appendix A, defines criticality categories throughout NASA. These
represent priority requirements that could apply to all aspects of NASA programs including mea-
surement processes, The categories of criticality are paraphrased here as follows:

Category 1 Measurements that qffect loss of life or vehicle.
Category 2 Measurements that affect 10ss of mission.
Category 3 Measurements that affect performance other than Category 1and Category 2.

Category 3 is unspecific about subordinate categories, The criticality of measurements should
perhaps be classified in terms of the confidence to be expected in making decisions from mea-
surement data, (These subcategories may not be in precise order of importance, since they are in-
fluenced by circumstances,)

Subcategory 3.1  Measurements monitoring mission tasks and sensing changes to
steady state mission conditions.

Subcategory 3.2 Measurements of components and systems under development that
generate design specifications. Measurements of fabrication
processes that produce goods to design specifications.

Subcategory 3.3 Measurements made to test and confirm that products meet design
specifications. Measurements made to test and confirm that
measurement equipment Meets performance specifications.
Measurements made to test and confirm that uncertainties (errors)
have been determined and corrected and controlled.




Subcategory 3.4 Measurement of components and systems to determine their
maintenance status. Measurement or monitoring of environments
within which end items and test systems oper ate.

3.2.3.2 Difficulty of the Measurement

The degree of difficulty of each measurement may have a direct effect on its cost and quality,
Measurements deserving the most attention can be rated in terms of degrees of difficulty in
meeting measurement requirements, where that difficully may lead to hardware with lowered
performance capability. The following classifications are suggested:

Difficulty Degree A MosT DIFFICULT OR IMPOSSIBLE MEASUREMENTS:

Al Measurements of selected parameters that cannot be made because of lack of
available measuring devices and methods.

A2 Measurements that can be made, but to meet program requirements, require
methods that are extremely expensive, or time-consuming.

A3 Measurements of space-based calibration processes that cannot be supported
readily by simple on-vehicle or astronomical Or terrestrial measurement
references.

(Difficulty degrees Al, A2 and A3 usually force use of alternative performance parameters that

may only slightly characterize system performance, but can, at least, be measured at reasonable
difficully levels,)

Difficulty Degree B MEASUREMENTS THAT CANNOT MEET THE NHB 5300.4(1B) MEASUREMENT
UNCERTAINTY REQUIREMENTS:
Bl That uncertainties in any article or material measurement pProcess shail be less
than 10 percent (1 /1 0) of the measured parameter tolerance limits.
B2 That uncertainties of calibration processes be less than 25 percent (1 /4) of the
measured parameter tolerance limits.
Difficulty Degree C MEASUREMENTS MADE IN ENVIRONMENTS HOSTILE TO OPTIMUM MEASURING
SYSTEM PERFORMANCE.

3.2.4 Establishing Confidence Level Requirements

A method is needed to express the degree of confidence that is wanted for each
measurement process,

Confidence levels are related to the quality and reliability goals of the experiment, the hardware or
the process. These provide the designer of the measurement process with goals that determine
control of uncertainty in the measurement process. Otherwise, the measurement process designer
“must guess at the quality and reliability goals of the experiment, hardware, or process, Therefore.
the characteristic studies must also show the confidence levels at which the characteristic toler-




antes will be controlled. From these, measurement uncertainty analyses can be done, decisions
regarding tests can be made, and where and how often to test can be established.

Confidence levels have a direct effect on cost, schedule and data reliability for the measurement
system design, its production, its calibration, and its maintenance. Finding a way to assign
proper confidence levels Is needed to help planner and designer alike and is addressed in the next
section,

CONFIDENCE LEVEL (a), that is, the probability that the measurand value lies
within the uncertainty interval of the measurement, is expressed in this publica-
tion In terms of standard deviation, sigma or o.

For a high confidence measurement requirement, the system planner or designer needs guidance
about the confidence levels to require for system uncertainty estimates, The correlation of critical
applications and difficult measurements suggest that a matrix of these two elements can be
formed. This can present a decision base for assignment of proper confidence levels and a sense
of priority for the planning and costs for development and designs of the measurement processes.
Table 3.1 presents a suggested approach to choosing confidence level requirements to accompany
measurement uncertainty requirements.

TABLE 3.1

Measurement Uncertainty Confidence Level
Assignments for Measurement Applications and
Degrees of Difficulty

Legend:
Matrix Intersection Confidence No. of Standard Deviations
Number Level (Sigma)
1 99.99994 5.0
2 99.994 4.0
3 99.73 3.0
4 95.45 2,0
5 91.37 1.8
6 86.64 15
7 68.27 1.0

.Measurement cannot be performed.
Alternative parameter must be selected.




3.2.5 Establishing Measurement System Reliability Requirements

The previous section provided guidance on confidence level assignments for measurement uncer-
tainty requirements. Still, some way is needed to describe the period over which the uncertainty
estimate can be depended upon and how to translate that time into a useful design target. Two
elements are involved in the description. First, the time within which the uncertainty can be
“guaranteed”—this element is equivalent to the calibration interval, Second, the population
(percentage) of measurement data that can be expected to be within the uncertainty limits at the
end of the “guaranteed” time, This is the end-of-period (EOP) in-tolerance probability or the mea-
surement reliability requirement.

|
For practical purposes, the measurement reliability requirements and the confi-

dence level requirements coincide. |

The specified measurement uncertainty is to be contained within the measurement reliability/
confidence level requirements over the course of the calibration interval, For example, the ftrst
element could be a 6 month calibration interval: the second element would be a 95,450/0 EOP
measurement reliability, corresponding to a 2 standard deviation confidence level.

With the uncertainty, both the interval and the measurement reliability needs to
be specified to fully convey the design requirements for the measurement system,

This is necessary to assure that rapid uncertainty growth during the calibration interval does not
add unreasonable uncertainties to the measurement process when the measurement is being
performed, Unfortunately, neither the confidence level or the calibration interval are useful to the
planner unless they are translated into terms, or a single term, that designers can use.
Calibration interval mathematical models use a term that appears to fulfill this need, It is similar
to the term mean-time-between-failure (MTBF) used as a reliability target in hardware and system
design specifications.

MEAN-TIM E-BETWEEN-OUT-OF-TOLERANCE (MTBOOT) reflects the mean time be-
tween “soft” failures for measuring instruments and systems. For this purpose,
“soft” failures are defined as those that cause a measurement device to generate
data beyond stated uncertainty limits. These soft fallures usually go undetected by
the user and/or operator,

By contrast, MTBF failures are “hard” ones, resulting from extreme component degradation or
failure and subsequent inability to reach performance limits (ranges or frequencies) and usually,
are readily detectable to the user and/or operator. The exponential calibration interval mathemati-
cal model (see Appendix B) uses MTBOOT values to establish calibration intervals to match de-
sired percentage in-tolerance goals for program applications. For example, typical general purpose
military test, measurement, and diagnostic equipment (TMDE) have percent in-tolerance proba-
bility targets of from 72% to 85% EOP.

For a specified calibration interval, percent in-tolerance (measurement reliability) goals create
specific MTBOOT requirements. For example, a one year calibration interval on an instrument
that behaves according to the exponential model whose recalibration percent in-tolerance (IT) is to
be greater than 95% IT EOP, results in an MTBOOT requirement of 40,500 hours. This would
mean that the instrument designer would have to target his design for an MTBOOT equal to or




greater than 40,500 hours if the one year interval is to be achieved, (Under normal circum-
stances, most MTBFs would be-at least equal to or greater than a specified MTBOOT.) A four
month interval with measurement reliability targets of 95% IT EOP would lead to an MTBOOT of
13,500 hours. For the same four month interval, if 299% IT EOP was a requirement, the MTBOOT
would increase to 68,700 hours, Were these values of MTBOOT unachievable in the design, the
interval would have to be shortened, the allowable out-of-tolerance percentage increased (that
could lead to an increased risk of wrong decisions being made from the measurement process
through lowered measurement reliability), or the mission objectives re-evaluated to adapt to the
lowered measurement reliability.

Table 3.2. reflects example measurement reliability requirements versus MTBOOT for a 1 year, six
month and three month calibration Interval assuming a 40 hour work-week usage, and for sys-
tems whose uncertainties grow exponentially with time, (MTBOOTs for shorter or longer inter-
vals/usage would vary linearly with time.) The figures in the table are based on the following
mathematical relationship:

MTBOOT = -Usage Hours per Year/ in R
Where: R = confidence level or measurement reliability.

TABLE 3.2

Mean Time Between Out-of-Tolerance (MTBOOT) Design Values
for Confidence Level/Measurement Reliability Goals for
Equipment Following the Exponential Reliability Model

MEASUREMENT PROCESS

CONFIDENCE LEVELS MEASUREMENT SYSTEM MTBOOT (Khrs).
SIGMA RELIABILITY GOAL FOR1YR. FOR 6 MO. FOR 3 MO.
5.0 99.999970 3,467,000 1,733,000 867,000
4.0 99.994 34,667 17,333 8,667
3.3 99.9 2,059 1,030 515
3.0 99.73 743 372 186
26 99 206 103 51.5
2.0 95.45 44.7 22.4 11.2
1.96 95 40,5 20.3 10,1
1.8 91.37 23.0 15.5 7.75 ,
1.65 90 19.7 9.85 4.93
1.5 86.64 14.5 7.25 3.65
1.44 85 12.8 6.4 3.2 |
1.08 72 6.33 3.17 1.58
1.0 68.27 5.45 2.73 1.36 :
0.84 60 4.07 2s)4 1.02
0.67 50 3.0 1.5 0.75
.(2,080 usage hrs/yr @ 40 hrs/wk)

RN R o

Specific values of MTBOOT and implied values of MTBF can be used for definition of system reli-
ability design requirements. They can be used by program planner and system designer alike.




3.2.6

Finalizing Measurement Requirements

Once the measurement parameters, measurement values, applications, environment and toler-
ances [including confidence/reliability limits) have been defined, the final definition of measure-
ment requirements is nearly complete,

If the measurement process supports an experiment, article, or fabrication pro-
cess, NHB 5300.4(1B) requires that the measurement uncertainty be less than ten
percent (1/ 10) of the tolerances called out for the parameter. If the measurement
relates to a calibration measurement process, NHB 5300.4(1B) requires that com-
bined uncertainties of the calibration measurement system will be less than 25
percent (1/4) of the tolerances called out for the parameter.?

Finally, the ten stage definition process generates a measurement requirement that includes:

The parameter to be measured, including the range and specific values of the parameter,
and its location and point of measurement

The process characteristics such as static or dynamic, bandwidth/frequency spectrum,
etc.

The measurement modes such as absolute, gage or differential pressure, volumetric or
mass flow, temperature conduction, convection, radiation, etc.

The environment (pressure, temperature, moisture, electromagnetic interference, etc.) in
which the measurement is to be done, including measurement sites and operators

The data to be acquired throughout the measurement process. including data rates and
data bandwidths

The measurement uncertainty requirements associated with each value of the parameter

An expression of the confidence limits within which the uncertainties must be contained,

These limits would be determined by considering the criticality of the application and the
difficulty of the measurement

The time limits between measurements or tests to assure control of hardware performance

spread and a definition of the percent of items or measurement data to be found operating
within performance and uncertainty limits,

Equipped with these clearly defined measurement requirements, the designer of the measurement
process can continue in an orderly manner to develop specifications to meet a specific design goal
and to complete a successful measurement system design,

tistical P

These “rules of thumb” ratios of 1/10 and 1/4 are simplified methods of assurin% that test or calibration pro-
cess measurement uncertainties do not negatively affect decisions made from

he measurement data. When

these rules cannot he met, far more complicated alternatives are available to determine measurement uncer-
tainty re?uwements. These include individualized measurement uncertainty analyses and measurement sta-
ocess control techniques discussed elsewhere In this document,




3.2.7 Example-Measurement Requirement Definition of a Salar
Experiment -

An example is presented below to illustrate the ten-stage measurement requirements definition
process. The example starts with space science mission requirements and, through the first six
stages, develops the Solar Experiment instrument system requirements, In Stage 6, the example
switches to the development of requirements of the ground test system needed to support the
flight system. Examples covering the operational measurement system design are provided in
Section 4.

STAGE 1 — Mission Profile

A space mission named the Solar Experiment is planned that includes, as one of several tasks, an
experiment to determine the variability of solar ultraviolet (UV) irradiance over a year's cycle.
Extreme fluctuations in irradiance are expected to be found based on rough measurements (x30%
of indicated value) taken on earth-based instruments whose uncertainty was increased by atmo-
spheric interference. For the mission, measurement data uncertainty of less than + 100A of indi-
cated value (1V) s wanted with 24 hour-per-day, ten-second increment data transmission capabil-
ity. Mission reliability is targeted at 99.73°4 (30.) The Solar Experiment’s mission application has
been designated by management as a Criticality Category 3,1.

STAGE 2 — Measurement System Performance Profile

The phenomena to be detected are UV intensity and spectra, The measurable characteristics are
determined to be units of power (watts/square meter—W/m2) and spectra (wavelengths of 120 to
400 nanometers,) Measurement difficulty is high and has been assigned Degree A3.

To avoid compromising the mission reliability goal, the reliability goal of each mission component
(experiment) must have a reliability goal significantly higher than that of the mission reliability
goal. Confidence levels for the Solar Experiment’s goals need to be significantly higher than the
mission’s reliability goal of three sigma,

Using Table 3.1, the critical application/difficulty confidence level matrix, a target of 4o (99.994%
confidence level) appears proper for the Solar Experiment’'s part of the mission,

STAGES 3 and 4 — Measurement System and Component Performance Attributes

The fluctuation in ultraviolet radiation can be measured in several ways: by differential te¢h-
niques, by absolute techniques, and by a combination of the two. An absolute technique is cho-
sen as the objective. Calibration and testing of the experiment's instrumentation system will be
done in the environment of the launch site’s test laboratory. Measurement value ranges are set at
1 to 100 milliwatts per square centimeter with a spectrum of 120 to 400 nanometers. The mea-
surement uncertainty requirement is + 100A IV to meet the data accuracy requirement at a confi-
dence level of 4a. The performance interval over which the uncertainty is to be maintained is 1
year. To provide the design criteria for system and/or component reliability, an MTBOOT corre-
sponding to a 40 1 year test interval is assigned. (After one year the system is to be transmitting
measurement data, 99.994% of which is within uncertainty limits off 10% IV.) A 24 hour day, full
time data transmission operational requirement generates 8760 hours per year of usage time,
Presuming the instrumentation system’s uncertainty will degrade exponentially, an MTBOOT re-
quirement of about 146,000,000 hours is assigned, Shown earlier, MTBOOT is calculated from
the equation:




MTBOOT = -Usage Hours per Year/ InR

Where: R = confidence level or measurement reliability

An MTBOOT (or even an MTBF) of 146,000,000 hours is an extremely high requirement that the
designers may find impossible to meet. It may call for the extraordinary design features discussed
earlier. It may also need a request for waiver of the 99.994% (4 o) confidence level requirement to
something closer to 3c. However, even a 3.290 requirement. translates to 99.9% levels which, for
a one year interval would establish an approximate 8,756,000 hour MTBOQT. Obviously, the final
design for the Solar Experiment instrumentation system will be difficult. While prototypes have
been said to be available with “accuracies of $5% of indicated value,” the confidence levels of the
uncertainty estimates were” determined to be no better than 36, with no account taken for uncer-
tainty growth over a full year, although long-term photodiode sensor and optical element stabili-
ties were said to be excellent. An attentive reevaluation of the capability of the prototype will be
needed to confirm that uncertainties at higher confidence levels over the year's interval will match
the +10% requirement. If all efforts fail, it may become necessary for the planners to rethink the
need for a 10% data accuracy requirement for the Solar Experiment, or a 3¢ mission reliability
target, They also could consider changing the data sampling rate to reduce the 24 hour per day
operational requirement to, say, 8 hours per day. This would reduce the MTBOOT by 2/3,

STAGES 5 and 6 — Measurement Parameters and Measurement Process Requirements

The sequence now calls for an assessment of the Solar Experiment instrumentation system to
determine how and to what requirements its first calibration and retesting after one year will be
done, Since the instrument can detect power and spectra, its own first calibration and retesting
will need a source or stimulus and comparator with proper characteristics to emulate the UV
solar irradiance phenomenon, This requirement calls for a source and comparator testing system
that can generate and detect 1 to 100 milliwatts/square centimeter across the 120 to 400
nanometer spectra, As prescribed by NHB 5300,4(1 B), the uncertainty of this test system is to be
10% of that of the Solar Experiment's goal, or +1% IV, It has a Category 3.1 application assign-
ment. The degree of difficulty is Bl in expectation of the inability to meet the +1% IV requirement,
From the Table 3,1 application/difficulty matrix, a 4o (99.994%) confidence level requirement is
assigned. The calibration interval for the test. system can be short, except its calibration is ex-
pected to be expensive and time-consuming. Six months is considered an acceptable target,
Calibration of the test system will be done in a calibration/standards laboratory environment,
Test system usage is planned to be 40 hours per week, Presuming the test system’s uncertainty
will degrade exponentially, the MTBOOT requirement is 17,333,000 hours, corresponding to
99.994% measurement reliability and a 6 month’s calibration interval with 40 hour per week
usage.

STAGE 7 — Measurement Systems Designs

The test system that will be designed to meet the Measurement Process Requirements stages is a
series of three calibrated standard Deuterium lamps operating in an ambient air medium, These
serve as 1 to 100 milliwatt/cm2 power sources operating across the full power range at spot
wavelengths in the spectrum of 120 to 400 nm with proper shielding and focusing hardware to
assure that random uncertainty sources are minimized. Three lamps are used to meet the
MTBOOT requirements, to allow process-controlled statistical intercomparisons of the three to in-
crease measurement uncertainty confidence levels, and to compensate for the gaps in the wave-
length spectrum, Also, measurement techniques will be devised so that, the largest bias errors of
the experiment’s instrumentation system are corrected for in its embedded computer software, as




are wavelength extrapolations. While an uncertainty of £1°/01V to 46 for 6 months for the new de-
sign is not achievable, i-1940 IV at 3o for 4 months is. The 36 at 4 months requirement results in
an MTBOOT of 248,000 hours. By comparison, for the new system to achieve a 46 confidence
level would create a short calibration interval of only 65 calendar hours, or less than every three
days. Conversely, if the original £1.0% IV tolerances could be relaxed to +1.33% IV, the 40 at 4
months could be met. However, this #1.33% IV, “4x4” system needs an MTBOOT of 11,556,000.
This would be the equivalent of saying that a 1%, “3x4” system with a 248,000 hour MTBOOT is
equal to a $1 .33°-6, “4x4” system with a 11,556,000 hour MTBOOT. If an MTBOOT was too high to
meet, designing to a lowered confidence level, a shorter interval, and a somewhat wider tolerance
will allow a much lower MTBOOT and provide some design relief. The design will trade off use of
expensive high reliability components, parallel and redundant circuits, etc., for spending effort on
a better understanding of the uncertainty estimation and improvement process. In the case at
hand, a 25% tightening of tolerances from 1 .33°A to +1.0% netted a 4500% reduction in
MTBOOT. This dramatic change is the result of the drop from an extremely high confidence
level—46/99.994%—to a more moderate one+-30/99.73°A. Section 6 will shed more light on these
intriguing trade-off possibilities,

STAGES 8 AND 9 — Calibration Process Requirements and Calibration System Designs

Requirements for the calibration system to support the test system are defined in terms of the
need to calibrate the standard lamps and the related optical elements. Intercomparison devices
and reference standard lamps will be needed in the calibration/standards laboratory to charac-
terize and to determine the bias and precision errors of the lamps {f they haven't been determined
before. In any event, the bias errors need to be determined periodically and either corrected out,
or a certificate issued to tell the test system user the correction factors to apply when testing the
instrumentation system. The same power and spectra requirements exist-1 to 100 milli-
watts/square centimeter and 120 to 400 nanometers wavelengths. Per the NHB, the calibration
system uncertainty is to be 25% or less of the uncertainty of the test system. This results in a
preliminary uncertainty requirement of +0.25% for the calibration system, While a one year cali-
bration interval is desirable, due to the difficulty of sending the reference standard lamps to the
National Institute of Standards and Technology (NIST) for standardlzation, a six month interval is
chosen to reduce expected MTBOOT ‘requirements, reduce the bias errors in the calibration pro-
cess and reduce calibration uncertainties, While the criticality of application is still Category 3,1,
the difficulty of measurement is below Degree C, labeled OTHER on the matrix. This results in a
confidence level and measurement reliability requirement of 2o, or 95.45?40. The usage of the cali-
bration system is expected to be less than 1,500 hours per year because of its specialized appli-
cation, The calibration system MTBOOT is 16,154 hours for a 95,45°A measurement reliability, 6
month calibration interval, and 1,500 hours per year usage rate, From these requirements a new
calibration system emerges that has an optical comparator, environmentally controlled and vi-
bration isolated, and uses a bank of three standard reference lamps and statistical analyses
techniques for enhanced uncertainty determinations and control,

STAGE 10 — Measurement Traceability Requirements

To assure that the measurement processes are nationally and internationally correlated, the cali-
bration system’s reference standards need recalibration (standardization) at NIST or an equivalent
facility whose measurement processes meet the NHB requirements and which are themselves in-




ternationally standardized The standard lamps used as references In the calibration system will
be periodically rotated to NIST for calibration so fresh lamps, within their 6 month intervals are
always in use. To maintain the high confidence levels called for, the bank of reference lamps in
the calibration laboratory is intercompared with the freshly calibrated lamp from NIST to confirm
that all are within uncertainty limits. NIST is requested to provide an estimate or realization of the
absolute values of the power and spectra, or to provide corrections for bias differences discovered
during the NIST standardization process, They are also requested to furnish correction factors for
operation in vacuum, versus ambient air in the laboratory. For traceability to continue to the in-
ternational level, NIST will send their national reference standard lamp or suitable transfer stan-
dard lamps to the International Bureau of Weights and Measures (BIPM), and other nation’s labo-
ratories noted for lamp calibration competence (NPL in the UK, for example), and to confirm vac-
uum to air correction coefficients. This will assure that international standardization is controlled
and measurement uncertainty estimates are valid.

In this, and other similar cases, each nation including the US, have established reference stan-
dards for a particular quantity. They do not rely on a single international standard, Instead, they
conduct periodic intercomparisons and measure the difference between the as-maintained stan-
dards representing a particular unit (here, the unit of irradiance—watt/meter2)

During the intercomparison process, it is Important to note that NIST should be requested to
provide the uncertainty estimate for their measurement process and the confidence levels that ac-
company the estimates (so that adjustments to required program confidence levels can be made,
if needed.) NIST should be requested to confirm that their measurement uncertainty estimates
account for the degradation over time of their systems, so that when standardization values are
“certified” by them, they warrant that the values are within the specified uncertainty limits to the
confidence stated at the time of their measurements. This assurance is often unclear in NIST re-
ports. (The calibration laboratory should also realize that its own standard’s uncertainty will de-
grade with time.) Using the 25% (1/4) NHB ratio requirement, the uncertainty limit for NIST for
the standard lamps is +0.25%/4, or, +.06% IV at 2¢. This would be equivalent to +0.09% IV at 3o.
If the NIST certificate showed an uncertainty estimate of less than 0.09% IV at 3¢, the uncertain-
ties could be ignored as having minor contribution to the calibration laboratory calibration chain.
If the uncertainty was greater than the equivalent of 0.06% IV at 20, the uncertainty of the NIST
value should be combined with the calibration laboratory uncertainty estimates for comparison
with the program measurement requirements. Desirably, the measurement uncertainties of the
Solar Experiment instrumentation system should have been derived from the stack of uncertain-
ties spilling down from international standards laboratories, through NIST, through the calibra-
tion laboratory, through the test laboratory to the solar instrumentation system, These hierarchi-
cal calculations can be an onerous, iterative task, The use of the NHB uncertainty ratios (1/10
and 1/4) between the layers of the measurement process chain simplifies this uncertainty as-
sessment process, It allows independent relationships between laboratories as long as the uncer-
tainty estimates of each can be trusted and fully stated and the uncertainties are sufficiently
small to meet the NHB ratio requirements. The problem is that uncertainty statements are rarely
stated fully and adequately to execute sound planning and requirement definition. Further, it is
often impossible to meet ratio requirements because of limits in the state-of-the-art of the mea-
surement process, This topic will be explored further in Section 6.

8 Where measurements are being made with “state-of-the-art” techniques, activities at ati levels should be
carefully coordinated wtth Nist to ensure traceability at the desired [Or near) level.
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By pursuing the ten stages described here and establishing rigor throughout the
measurement chain, adequate uncertainty definition is assured, weak spots are
made visible and compensation or corrections are applied to assure measurement
process control. °

3.2.8 Compensating for Difficult Requirements

It ofien seems that the most critical and difficult of measurements are the high priority ones, yet
they are the most apt to produce measurement requirements nearly impossible to satisfy. Often, a
lack of capability is a result of state-of-the-art limits, i.e. present technology has yet to produce
the needed equipment or techniques of measurement, especially for long-term space-based sit ua-
tions. While technological development efforts should be pursued to resolve the fundamental un-
certainty limit problem, especially on the higher priority measurements, parallel efforts to com-
pensate for limits can be taken by any of the following actions:

« Measuring alternative, more easily measured parameters
« Making more independent measurements
« Retesting the end item hardware at more frequent intervals, especially before deployment

« Relaxing end item tolerances where no criticality category is endangered or when end item
quality is not degraded excessively

« Applying alternative measurement schemes of higher net accuracy

« Using embedded, intrinsic or astronomical reference standards to improve long-term sta-
bilities

» Using multiple sensors and measurement paths

« Applying computer enhancements with statistical process control methods,

These and other innovative compensation methods may be needed to meet severe measurement
requirements for long intervals, high confidence and low uncertainties,

33 Calibration Considerations

Measurement processes are accompanied by errors and uncertainties that cannot be eliminated,
However, they can be quantified and limited or controlled to “acceptable” levels, Calibration is
done for this purpose.




Calibration compares the declared value of an attribute or parameter of a calibrat-
ing artifact, such as a reference standard, against the declared value* of an at-
tribute of a unit-under-test (IJUT.)

When the UUT is a test instrument or another calibrating instrument, the result of calibration is
usually a decision whether the calibrated attribute is within stated tolerances, Following calibra-
ton, the attribute may or may not be adjusted or corrected to within tolerance. When the UUT is
used as a standard, its declared value is usually corrected and uncertainties involved in perform-
ing the calibration are reported. When the UUT is a parameter of a design prototype undergoing
initial standardization, the calibrating artifact provides a reference against which parameter de-
clared values are set, Uncertainties in the calibration are quantified and used in establishing the
parameter’'s specified tolerances

All measurements involve a stimulus and a response, Figures 3,1 through 3.3 illustrate the prin-
cipal basic configurations.

TRUE VALUE \.
0.000094V I

CALIBRATING ARTIFACT

Ficure 3.1 — CAUBRATION ConrigURATION-UUT As Source, In this configuration, a prop-
erty of the UUT provides the stimulus. The UuT’s declared attribute value is its nominal
value or an indicated output. The calibrating artifact provides the sensor. The calibrating ar-
tifact’s declared attribute value is displayed or otherwise shown.

From this, it can be seen that the question “why calibrate?” has been transformed into two ques-
tions: (1) “Why quantify measurement error and uncertainty and control them to acceptable lev-
els?” and (2) “What are acceptable levels of measurement error and uncertainty?” To answer the
first question, it will be useful to examine what is calibrated and why. As discussed in later sec-
tions, calibration comprises part of a measurement support infrastructure called the test and
calibration hierarchy. In this hierarchy, fundamental standards are used to calibrate reference
(interlab) standards that are In turn used to calibrate transfer standards that then are used to
calibrate measurement devices.

of a reference standard is usually a documented quantity obtained throughcalibration with a higher-level

Chapter 5 distinguishes between a “reference standard and a “djrect readn%ﬁipparatus.” The declared value
artifact. The declared value of a direct reading instrument is usually a digital readout, a meter reading, or

equivalent. In the simplest cases, the declared value is @ nominal rating. Thus, the declared value of a 5 cm
age blocki for example, is 5 centimeter. The concept of a declared value can be extended to components.
or examp

g, the declared value of a 100 n resistor is 100 ohms.




The goal of calibration is the transfer of accuracy from a calibrating standard to an artifact that
comprises an end item, or will be used to calibrate or test other artifacts. In this usage, the accu-
racy of the standard and the uncertainties in the transfer process are factors in establishing the
subject parameter’s tolerances. Following the test and calibration traceability down the vertical
chain (see Figure 5.1), it becomes apparent that inaccurate reference standards beget inaccurate
transfer standards that, beget inaccurate working standards that, beget inaccurate test systems
that, beget inaccurate end items and/or erroneous end item test results.

UuT

TRUE VALUE
100.001 MHz

100.000 MH

et ey

FIGURE 3.2 —CAugRATl_dN CONFIGURATION-CALIBRATING ARTIFACT AS SOURCE. In this con-
figuration, the calibrating artifact provides the stimulus. The calibrating artifact's declared
value s its nominal or indicated value. The UUT provides the sensor. The sensor responds to

thle stimulus and drives a display. The displayed reading is the uUTs declared attribute
value.

0,009 kPa

TRUE VALUE
10,002 kPa

10,000 kPa

FIGURE 3.3 — CALIBRATION CONFIGURATION-EXTERNAL SOURCE. In this configuration, the
stimulus is supplied by a source external to both the calibrating artifact and the UUT. Each
artifact responds to thé stimulus and drives a display. The displayed readings are the cali-
brating and UUTs declared attribute values.

With these considerations in mind, the ultimate purpose of controlling measurement error and
uncertainty within a test and calibration hierarchy (Le., the ultimate purpose of calibration) is ei-
ther the accurate standardization of end item parameters, in design and development applica-




tions, or the control of erroneous end item testing in product production and equipment man-
agement applications or scientific measurements.

Answering the question of what constitutes acceptable levels of error or uncertainty within test
and calibration traceability calls for an analysis of the accuracy to which end Items need to be
standardized or tested, This accuracy should be established based on end item performance ob-
jectives. For example, a level of uncertainty that is acceptable in day-to-day measurement appli-
cations, such as checking automobile tire pressure, may not be acceptable in highly critical appli-
cations, such as monitoring nuclear reactor core temperatures, or in state-of-the-art applications.
Working backward from end item accuracy requirements enables the quantification of accuracies
needed for test system calibration, Working backward from these accuracies enables the determi-
nation of accuracies needed for calibration of calibrating systems, and so on. The method for do-
ing an analysis of this kind is discussed in Section 4 and is presented in detail in Appendix C,

3.4  Space-Based Considerations

3.4.1 Space-Based Measurement System Implications

The design of measurement processes and equipment intended for long duration space operations
should consider providing functional and physical metrology architecture designed to fit tech-
niques and methodologies that will permit calibration and/or evaluation. The architecture should
use self-calibration, self-test, self-monitoring, and stable reference standards technologies to
minimize and facilitate space-based metrology control, The following should be considered.

« Design sound strategies for on-board calibration calling for minimum skill, a minimum of
reference standards, and minimum interference with on-going operations

+ Institute a policy to insure that on-board standards, including critical test equipment, are
regularly calibrated in terms of national standards for measurement traceability

+ Implement measurement quality assurance policies to insure long-term measurement in-
tegrity

« Establish tolerances of measurable attributes commensurate with equipment performance
objectives

« Verify that available test process® accuracies and stabilities are adequate for testing and
monitoring end item attributes

« Verify that available calibration process accuracies and stabilities are adequate for ensur-
ing proper test process accuracies

« Verify that attribute stabilities are such that attribute values will stay within tolerance
limits over the period of intended use with a specified level of confidence.

Calibration requirements created by long-term space-based missions pose special problems. Ease
of calibration and minor repatr or adjustment is frequently a low priority item in the design of in-
strumentation, For example, unlike most other space-oriented hardware, equipment in a manned

In the context used, the terms “test process-, “measurement process®, and “TME" (Test and Measurement

Equipment) are USed interchangeably throughout this document and can be considered to be equivalent for
practical purposes.
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space-based platform will need regular calibration access and adjustment over the platform life-
time. To meet this objective, lifetime calibration and maintenance requirements should be ad-
dressed during the earliest design phase.

A requirement for long calibration intervals means that high MTBOOT design targets will result,
These will be difficult to meet unless the designs are very simple, minimize components used, and
use redundant circuitry in critical measurement paths, Humanly-executed space-based calibra-
tions are discouraged for several reasons such as time, space, weight and priority considerations,
For those measurement systems whose calibration intervals are estimated to be shorter than the
mission duration requirement, special in-place calibration or interval extension schemes should
be tried, The following should be considered:

Provide internal instrument reference standards having a long-term accuracy commensu-
rate with expected mission profiles

Use built-in measurement standard references at selected points in the operating range

Use carefully characterized astronomical artifacts as intrinsic type measurement refer-
ences such as thermal, radiation, intensity and noise references

Use earth-to-space-to-earth comparison signals

Replace unstable measurement system components with easily installed, small, modular,
freshly calibrated units-use modular design to ease calibration, maintenance and re-
placement

Use higher accuracy (> 10:1) measurement processes to compensate for increasing uncer-
tainty over time such that the calibration interval matches the time where uncertainty
growth has reached a point equal to a 10:1 process before re-caltbration is due

Build in redundant and compensating measurement circuitry to improve reliability

Provide physical adjustment points which are readily accessible without major disassem-
bly of the equipment—all easily accessible adjustments should be sealed afier calibration

Use alternative or multiple measurement sensors with comparison devices
Standardize easily accessible interfaces to instrumentation to simplify calibration

Tighten end item hardware tolerance requirements to create more conforming hardware
that can tolerate the lowered confidence levels generated by the increasing uncertainty
over time of the measurement process

Provide access for sensor calibration and the capability of being calibrated in-position or
in-place

Design instrumentation and racking to allow complete calibration in place
Make corrections and adjustments via software

Measure end items more frequently to assure higher confidence that parameter growth
beyond performance limits is detected earlier and that a higher population of end items
are operating well within tolerances when deployed

Use measurement statistical process control schemes to improve uncertainty,




These, and any other schemes that can be devised, should be considered to implement space-
based calibration support. However, it should be cautioned that all measurement systems need
complete calibration at some point to assure adequate conttnued performance,

So-called self-calibration or self-test systems are useful, but are rarely substitutes
for complete periodic calibrations-they serve mainly as interval expanders or lim-
ited range stop-gap devices. Also, note that statistical measurement process con-
trol (SMPC) is a tool to analyze results and permit better decisions to be made.
Ultimately, to ensure that any standard or instrument is “in calibration” calls for
comparison to a known representation of the same unit.

Evaluating the adequacy of test and calibration process accuracies is done through measurement
decision risk analysis. Further information on measurement decision risk analysis will be found
in Section 4.

3.4.2 Statistical Measurement Process Control for Space-Based
Hardware

Measurement assurance support is usually viewed as a process in which the accuracy of a mea-
suring instrument or system is maintained over its life cycle through either periodic calibration or
testing. For items remotely operated and monitored, such as those deployed in space-based envi-
ronments, periodic calibration or testing is more difficult than with terrestrial applications. In
certain applications, such as deep-space probes, periodic calibration is next to impossible.
Exceptions are cases where terrestrial or astronomical references can be used, In such cases, the
use of statistical measurement process (SMPC) methods maybe advisable.

SMPC methods enable the estimation of measurement parameter biases and in-tolerance proba-
bilities through statistical intercomparisons of measurements made using closed sets of indepen-
dent measuring attributes. A measuring attribute is regarded here as anything which provides a
declared value as interpreted in Section 3,3, In this sense, a measuring attribute may provide a
measurement, a value comparison, or a quantified stimulus. Attributes in a set maybe as few as
two or as many as can be imagined, The set may include both calibrating units and units-under-
test in either one-to-many or many-to-one configurations.

In traditional calibration and testing, the calibrators are ordinarily required to be intrinsically
more accurate than the units-under-test, Therefore, measurements made by calibrator are held
in higher regard than measurements made by units-under-test. If a calibrator measurement
shows a unit-under-test to be out-of-tolerance, the unit-under-test is considered at fault, In
making statistical intercomparisons, the SMPC methods do not distinguish between calibrators
and units-under-test. Measurement intercomparisons provide bias and in-tolerance probability
estimates for units-under-test and calibrators alike. Consequently, the SMPC methods can be
used to evaluate the status of check standards as well as Test and Measurement Equipment
(TME) workload Items,

Check standard and TME recalibration maybe done on an attribute set without recourse to ex-
ternal references, if SMPC methods are applied under the following conditions:

(1) The measuring attributes in the set are statistically independent

(2) The attributes in the set exhibit enough variety to ensure that changes in attribute values
are uncorrelated (i.e., tend to cancel out) over the long-term, -
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(3) Drift or other uncertainty growth characteristics of the attributes in the set that have been
defined before deployment.

(4) The attributes in the set have been calibrated or tested before deployment.

If these conditions are met, application of the SMPC methods can serve to make payload measur-
ing systems somewhat self-contained, This subject is covered in detail in Section 6.4 and
Appendix D.

3.5 Software Considerations

Major measurement systems typically are computer-based, They contain software that can affect
measurement quality. As the cost of computer hardware decreases, software will be contained in
the smallest measurement systems, It is certain that the importance of software to measurement
quality will Increase during the life of this Publication, Software development, and its affect on
operations, is important to NASA's measurement processes,

3.5.1 Software Requirements

Software requirements for measurement systems should follow the requirements flowdown de-
fined in the ten stage sequence of Section 3,2.1. Also, two factors will make software use in NASA
measurement systems particularly important:

(1) NASA measurements are often associated with spaceflight tests, where stringent time
pressure because of launch commitment is typical,

(2) Software control of measurements for long-term space flight operations will often be more
practical than hardware changes,

The potential need to change measurement system software quickly during testing and opera-
tions, makes it necessary to consider special software requirements,

(1) Software modularity that will minimize effects of changes made under the duress of test
conditions, should be stressed.

(2) Test cases that help objective definition of measurement uncertainty during the opera-
tions phase should be required.

(3) Software maintenance during the operations phase of long-term flight missions should be
given great emphasis.

(4) All requirements connected to the operations phase should be reviewed critically to make
certain they are testable under the expected operations environment,

(5) Provision for regression testing targeted to the operations environment should be re-
quired, particularly for long-term spaceflight missions.

3.5.2 Software Development

Software development must follow a structured, accepted development method, such as NASA'’s
Software Acquisition Life Cycle, to assure software quality. Besides normal software development
methods, measurement software should consider:




(1) Verifying modularity by detailed inspections or walk-throughs that consider software
changes made in the operations environment. These activities can start in the software
architecture phase, then continue throughout the software development.

(2) Specifying exact hardware configurations for software test cases. Tests done during op-
erations can then reproduce results obtained in acceptance tests, or provide objective ex-
planations of the effect of hardware changes. Measurement uncertainty monitoring during
operations must also be based on known hardware configuration.

(3) Documenting acceptance test results related to measurement quality in a form directly
usable during operations.

3.6  Considerations for Waiver of Requirements

The effective implementation of the requirements normally results tn a level of performance and
risks acceptable to the project, Any deviation from these requirements usually requires a formally
approved written waiver. The watver should identify the risk resulting from the deviations and
identify the original requirement, reason/justification for the request, and show what effect the
waiver/deviation will have on performance, safety, quality, and reliability. The measurement
classifications earlier discussed in Section 3,2,2 can aid in the preparation of a waiver request.
The recommended standards for waiver or deviation requests are discussed in Section 8.

While it is intended that flight equipment be designed to perform within specification throughout
the flight environmental design and test ranges, it must be recognized that sometimes out-of-
specificalion performance at extreme flight environment limits may be justified and approved by
waiver. For instance, an instrument or an engineering assembly may need complex sophisticated
temperature compensation circuitry to provide in-specification operation throughout the required
flight temperature range. Instead of incurring great cost, mass, and perhaps reliability penalties,
an alternative approach would allow out-of-specification performance at temperatures near the
extreme flight temperature range. This would be prudent for consideration when the following
qualifying conditions exist:

(1) The out-of-specification performance is predictable and repeatable,

(2) The performance will be within specification when the flight equipment temperature range
is within the allowable flight temperature boundaries,

(3) The out-of-specification performance will produce no permanent degradation in the flight
equipment,

(4) The allowable flight temperature range will include all temperature prediction uncertain-
ties and reflects not-to-be-exceeded limits in flight,

(5) The flight equipment development engineering organization can prove by analysis or test
that the above four conditions hold true for the flight equipment being addressed.

Flight equipment components that have been characterized with proven temperature sensitivities
incompatible with the product assurance environmental temperature ranges, might be assigned
tailored design and test temperature limits with an approved waiver,




41 Measurement System Design Approach

The previous section described the derivation of measurement requirements. This section pro-
vides the approach for design of measurement process hardware to achieve the required perfor-
mance attributes established in Section 3.1t identifies the various errors associated with the
measurement process chain, reviews methods of combining errors, reviews the measurement sys-
tem specifications established in Section 3, and presents a systematic design approach for mea-
surement systems.

It is critical that the system designer provide visibility into the process of going from requirements
to specifications to physical systems, A structured process enables timely and significant design
reviews at critical points.

MEASUREMENT i
SYSTEM DESIGN
PROCESS

PRELIMINARY
DESIGN
REVIEW

REQUIREMENTS |
DEFINITION
PROCESS

CRITICAL
DESIGN
REVIEW

DETAILED
DESIGN &
FABRICATION

| ACCEPTANCE
TESTING

Ficure 4.1 — OVERVIEW OF THE MEASUREMENT SYSTEM DESIGN PROCESS.

Figure 4.1 is an overview of the design process that features two essential reviews, One review is
at the finish of the requirements definition phase and one is at the completion of design, Other
reviews may also be incorporated to review progress on specific elements, Since the design fo-
cuses on supplying a system to satisfy the requirements, it is important that the Preliminary
Design Review critique the requirements to establish completeness, For a measurement system,
the requirements describe types of measurements (e.g., temperature, pressure, etc.), measure-
ment range (e.g., 100 KPa for a pressure measurement), required accuracy (e.g., 0. 1% Full Scale
within 3 standard deviations for 1 year), bandwidth (e.g., 10 Hz), etc. Once approved, the re-
quirements document is usually placed under configuration control. The second major review is
termed Critical Design Review and is a review of the system specifications and associated draw-
ings. During this review, it is the responsibility of the designer to prove that each requirement has
been satisfied by relating system specifications and attributes to requirements. The calibration
methods necessary to achieve the required measurement system performance are presented and
the measurement system specifications are established at this review,

An example of a measurement system design process of translating requirements into system
specifications is illustrated in Figure 4.2. The process shown is for a digital measurement system
(i.e., a system with analog inputs converted into corresponding digital format,) There are two key
aspects of a digital system used in developing specifications-measurement uncertainty and
bandwidth. First, regarding measurement uncertainty, error propagation techniques are used to
decompose parametric measurement requirements into individual measurement requirements.
Error budgeting and prediction methods are used with candidate equipment performance specifi-
cations to establish performance specifications for the varlous components of the measurement
chain, Second, bandwidth is a critical requirement that is decomposed and used to establish
system specifications Including anti-alias filter characteristics, sampling rates, and throughput,
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Ficure 4.2 — EXAMPLE OF A MEASUREMENT SYSTEM DESIGN PROCESS.

It is assumed the measurement requirements have been analyzed to establish measurement sys-
tern specifications and the measurement requirements have been formalized (Section 3.)

Once the specifications have been established, it is the designer’s responsibility to
prove that the system when built will comply with the requirements.

The specific steps associated with designing a measurement process are:
(1) Identify physical phenomena to be measured and specific detailed requirements.
(2) Select candidate measurement equipment and Interpret their specifications.

(3) Construct an error model of the process and predict measurement system performance,
including MTBF/MTBOOT that match confidence levels and time limits,

(4) Identify calibration requirements,

(5) Evaluate the effects of changing environment on the measurement process.

(6) Manage the measurement decision risks.
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4.2 ldentifying Physical Phenomena to be
Measured

At the least, the following information should be established where applicable for each measure-
ment,

421 Process Characteristics

Establish the process characteristics and use this information in the selection of the sensors. The
rate at which changes occur in the parameters being measured and the systematic or repetitive
nature of occurrence are of special significance in determining how the measurement should be
made, The two general classes of process phenomena are static and dynamic. Dynamic processes
can be further divided into transient, periodic, and random, Time relationships are not as impor-
tant in the measurement of static processes as in the dynamic process measurements.

4.2.2 Measurement Mode

Establish the required measurement mode, For example, determine if the measurements are di-
rect, absolute, relative, differential, or inferential measurements, Direct measurement is feasible
only in those cases where the measurand can directly actuate the sensor. There are many physi-
cal quantities for which direct detection is not possible: for example, mass flow, Mach number, or
altitude. In such cases, one must rely on some functional relationship between the quantity one
wishes to measure but cannot, and other related quantities that can be measured, For fluid flow
measurements, determine whether the desired quantity is volumetric or mass flow.

4.2.3 Method of Transduction or Energy Transfer

The physical process that provides a usable output in response to the specific measurand should
be identified. For example, when measuring temperature, establish the primary mode of heat
transfer (conduction, convection, radiation.)

4.2.4 Measurement Location

Measurements are generally made at a point, As such, errors can result if there is a spatial gradi-
ent In the process. Also, the sensor installation may cause a process or system disturbance, such
as the weight of an accelerometer on a light structure or the flow disturbance of a Pitot probe in a
duct,

4.2.5 Measurement Range

Quantify the range of measured values, The setttng of parameter range should provide for the un-
certainty in the actual range of the measurand. This measurement range is later used for estab-
lishing “full scale” of the designed instrumentation system.

4.2.6 Measurement Uncertainty

Establish the acceptable measurement uncertainty over the required range and the required con-
fidence levels and time limits,




4.2.7 Measurement Bandwidth

Quantify the frequency content of physical phenomena to allow establishment of filter bandwidths
to pass the desired signal while suppressing noise and/or set digital sampling rates.

43  Selecting Candidate Equipment and
Interpreting Specifications

For each measurement, select candidate equipment whose characteristics and performance are
consistent. Since there are no industry standards regarding error definitions or performance
specifications, one must use caution when interpreting manufacturer’s performance specifica-
tons. Specification completeness and specification interpretation must be addressed,

4.3.1 Specification Completeness

The designer should review performance specifications for similar equipment from different man-
ufacturers to determine whether the manufacturer has listed all relevant performance specifica-
tions for the candidate equipment, Note all omissions, and be attentive to specifications that differ
significantly from manufacturer to manufacturer. Since each item specified can affect the mea-
surement process depending on configuration and application, it is the designer’s responsibility to
determine which specifications are important for the specific application.

4.3.2  Specification Interpretation

Performance specifications for measurement equipment are quantified and published to describe
a specific equipment’s measurement attributes. There maybe differences in the specifications be-
tween different manufacturers for similar items due to differences in the manufacturing and test-
ing process. If the manufacturer integrates several subsystems together to form a product, the
specifications will generally apply to the integrated system and not the individual subsystems.
Thus, published specifications are assumed to reflect the manufacturer’s testing process,

Beware — Occasionally, manufacturer’s specifications may be generated by the
manufacturer's marketing department and may have only a casual relationship to
the expected performance of measurement attributes. Establishing this relation-
ship ordinarily falls to the user.

For measurement equipment, performance specifications can be categorized as either application
related performance specifications or intrinsic errors, For a data acquisition system (DAS), appli-
cation related performance specifications Include source current, input impedance, input capaci-
tance, common mode rejection, temperature coefficients, and crosstalk, The magnitude of errors
resulting from these depends on the specific application. In contrast, intrinsic errors are those er-
rors inherent to the system, Typical intrinsic errors include offset, gain accuracy, non-linearity,
hysteresis, repeatability, and noise,

Except repeatability, drift, and noise, the intrinsic errors can generally be called bias errors. The
manufacturer’s specifications are interpreted to be absolute limits or windows for each error
source. A gain error specification of +0. 10/0 Full Scale (FS) is interpreted to mean the gain error
should be less than 0. 1°A FS (within stated confidence levels and time limits.) Manufacturer,
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specs are statements of performance, If manufacturer specs will be used as references for
estimating uncertainties, the instrument user needs to do the necessary calibration to ascertain
these claims, Should an experiment be done that shows the gain error exceeds 10.1% FS, it can
be concluded the equipment’s gain performance is out of specification.

Intrinsic errors such as repeatability and noise are classified as precision errors. As such, they
are normally distributed, The specifications for these errors must state either the statistically de-
termined standard deviation (e.g., +36), or the bounds. There is significant variation between
manufacturers in reporting precision errors such as noise. Typical units specified include 130,
peak-to-peak, etc. Since noise depends on gain and bandwidth, the specification is incomplete
unless both these parameters are given,

The requirement in NHB 5300.4 [1 B), Quality Program Provisions for Aeronautical and Space
System Contractors, Section 9, Article or Material Measurement Processes establishes a tight re-
quirement for the measurement system designer, It states “random and systematic errors in any
article or material measurement process shall not exceed ten percent of the tolerance of the pa-
rameter being measured.” This 10% requirement (known to many as the 10:1 requirement) places
much emphasis on the proper interpretation of the specifications furnished by the manufacturer
of the measuring devices and accessories that will comprise the measurement system.

First, the accuracy or uncertainty specification needs attentive examination to assure all the
needed information is included for use in the system uncertainty computation equations, Usually,
this information isn’t available in the written specification, Besides a statement of the measure-
ment uncertainty of each parameter the instrument measures, the time span is needed (one
month, 6 months, 3 years) that the uncertainty covers and standard deviations or o confidence
limits (one, two, or three) within which the stated uncertainty is contained, If this is not available
from specification sheets, the designer must go directly to the instrument manufacturer’s engi-
neers to determine those values.

Next, the environmental limit of the instrument needs to be determined to identify those contribu-
tors to other uncertainties that can and cannot be corrected or compensated for, These include
thermal responses, vibration sensitivity, moisture effects, radiation effects, etc.

Lastly, the “fine print” of the specifications must be examined to be sure there are no caveats re-

garding performance limits such as loading effects, frequency response, interface impedances, “

data flow rates, line power fluctuations (regulation), distortion effects, etc.

4.4  Evaluating Measurement System Errors

Understanding, identifying, and quantifying the various error sources is a prereg-
uisite for determining design adequacy and establishing calibration requirements.

It is preferable to err on the side of providing too much information rather than too little, One
should

o Clearly describe the methods used to calculate the measurement result and its uncer-
tainty

« List all uncertainty components and document how they were evaluated




® Present the data analysis in such a way that each of its important steps can be readily
followed and the calculation of the reported result can be independently repeated if neces-
Sary

e Give all correction factors and constants used in the analysis and their sources.

One should ask “Have | provided enough information in a sufficiently clear manner that my result
can be updated in the future if new information or data become available?”

The individual measurement uncertainties established because of error propagation relate to the
uncertainty of the complete measurement process and include many error sources as illustrated
in Figure 4.3. Knowledge of these errors is important in both establishing the estimate of uncer-
tainty and in establishing the calibration requirements.
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4.4.1 Sensing Errors

Measuring physical phenomena with sensors, which in themselves may influence the measur-
and’s value, c-an introduce errors to the measurement process. Typical examples are: pressure
measurements add volume: temperature measurements add thermal mass: and acceleration
measurements add mass. Typical error sources in this category include spatial errors, interaction
errors, alnddsensor errors. These are owed to disturbances caused by insertion of a probe in a
moving fluid.

Sensing errors are generally omitted from uncertainty estimates because of the difficulty in
quantifying this class of errors. However, this practice will nearly always lead to a significant un-




derestimate of the total measurement process uncertainty. Figure 4.4 shows an example of sens-
ing errors. ‘IWO thermocouples are Inserted in a stream of flowing gas to measure the temperature
rise of the gas. Heat is added to the gas immediately downstream of T,. The temperature of T,,
the downstream thermocouple, is significantly higher than that of T,and the wall, The value of
the bulk gas temperature rise at the two planes will be used in the data reduction equation:

Q:MCp(Tl-Tz)
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FIGURE 4.4 — EXAMPLE OF POTENTIAL SENSING ERRORS,

The following errors owed to the sensors can happen in this example:

« The gas will have a temperature gradient unless the wall temperature is equal to the gas
temperature, which is not a realistic case, Each thermocouple measures the gas tempera-
ture at a single point, which will not represent the bulk gas temperatures,

« The velocity of the fluid flowing around the probe sets up a boundary layer complicating
heat transfer from the fluid to the probe,

« The thermocouple probe conduction to the cold wall will lower the measured temperature
from the measurand. Parallel conduction paths exist: the protecting sheath, the two ther-
mocouple wires, and the Insulating material, If T,is at a different temperature relative to
the wall than T,, the conduction errors will be different,

« Radiation from the thermocouple probe to the wall will lower the measured temperature
from its value. The temperature will also be dependent on the respective surface condi-
tions [i.e., emissivity/absorption) of the probe and wall.

« Thermocouple wire of the same type will have calibration differences resulting from
slightly different composition,

«  Temperature differences along the thermocouple wire may create errors because of inho-
mogeneity of the thermocouple wire and local work hardening of the wire.

« The increased resistance of the thermocouple wire, and resistive imbalance between the
two different thermocouple materials, will increase the common mode voltage (CMV) error
over that of copper wire,




« The response ttme of the thermocouple wire/probe will create a time-lag error in the mea-
sured value, depending- on the dynamics of the measurand. The thermal mass of the
thermocouple will influence the response time.

These, and other errors will cause the measured value to be different from the value needed for
the data reduction equation-the temperature difference of the bulk gas, Analysis of these poten-
tial errors is necessary to disclose all uncertainties in the total sensing uncertainty.

4.4.2 Intrinsic Errors

The equipment that comprise a measurement chain such as sensors, signal conditioners, ampli -
flers, etc., contribute to the measurement’s error. This is because of error sources inherent to the
measurement and conversion system, This category includes error sources such as gain inaccu-
racy, non-linearity, drift, hysteresis, offset, and noise.

If the magnitude and direction of the intrinsic error of a measuring attribute are known, the error
can be factored out of measurements made on the attribute. Usually, the magnitude and direction
of intrinsic errors are unknown. Yet, they can be accounted for statistically if their distributions
are known, Often, information about the statistical distributions of intrinsic bias errors can be
inferred from calibration history, as discussed in Section D.3 of Appendix D.

443 Sampling Errors

Representing a continuous phenomenon with a set of discrete samples introduces measurement
errors. Typical error sources resulting from sampling are aliasing, aperture, and resolution. These
errors are generally minimized during the design process through analyses and later specification
of filter characteristics, sampling rates, etc.

Converting continuous phenomena into a set of equally spaced discrete values introduces an er-
ror called allasing by which high frequency energy (either information or noise frequencies) mani-
fests at lower or alias frequencies, The classic example used to show aliasing is the stage coach
wheel movement in a western movie, The camera is operating at a tied frame rate converting the
continuous wheel movement into discrete values. What appears to be a reversal of the wheel
movement is a result of aliasing, For a digital measurement system, aliasing can distort the mea-
sured value by introducing errors at various frequencies within the bandwidth of interest, System
designers account for this by .(1) filtering the analog signal to eliminate frequencies outside the
band of interest and by (2) choosing sampling frequencies based on frequency and dynamic dis-
tortion considerations.

4.4.3.1 Overview of Aliasing

Allasing is the process whereby two or more frequencies that are integral multiples of each other
cannot be distinguished from each other when sampled in an A/D (analog to digital) converter, A
folding frequency identifies the frequencies about which allased data is folded down to the fre-
quency range of interest,

NYQUIST FREQUENCY — frequency at which data is sampled at twice the upper
data bandwidth limit, Also known as a folding frequency.
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When data is sampled by an A/D converter, data from frequencies higher than the Nyquist fre-
quency will fold like an accordion pleat down to frequencies ranging from one-half the Nyquist
frequency down to the low frequency limit of the system.

If the sampling rate of an A/D converter Is less than the frequency components above the Nyquist
frequency (Jn ), the data will appear in the sampled data below fv . This phenomenon is known
as “allasing.” Data frequencies in the original data above Jn will be allased and added to the data
in the range O< f < fy and defined relative to Jn by f,,.c = (2nfy * f). where n =1,2,3+00 .

Allased data cannot be distinguished by a computer, nor can aliased data be
eliminated after it has been sampled, Once A/D conversion is completed, there is
no way to know from the sampled data whether aliasing has occurred. Even if it
were possible to know, there is no way to correct the digital data for alias-induced
errors,

Because aliasing can introduce errors into digital data, allasing must be made negligible by.
assuring that the sampled analog signal has no significant components above Jx . This is accom-

plished by using analog low-pass filters at the input to the A/D converter, Under no circum-

stances should analog to digital conversion be attempted without the use of analog low-pass anti-

allasing filters. It is very desirable that anti-aliasing filters have a flat frequency response over the

widest possible range below the cut-off frequency (f.). D-provide a margin of safety, the upper

value of f, of the anti-allasing filter should be set below N:. The value of f, relative to JN de-

pends on the anti-aliasing filter roll-off, the sampling frequency, the type of analysis to be per-

formed, and the signal above In.

A/D conversion systems are being used that employ over-sampling. A relatively unsophisticated
analog low-pass filter is used prior to the A/D converter to suppress aliasing in the original signal
and the A/D converter operates at a much higher rate than is required for the data upper fre-
quency limit. The over-sampled data is digitally filtered and decimated, The characteristics of the
analog low-pass filter are not critical to the resulting data and the digital filter characteristics are
much easier to control and are less costly.

Most low-pass filters produce frequency dependent phase shifts within f, and may introduce er-
rors that distort the data signal. In some analyses, the phase errors are unimportant (e.g., au-
tospectrum analyses.) However, amplitude domain analyses such as probability density and dis-
tribution as well as frequency domain analyses such as shock response spectra and cross spectra
can be adversely affected. In addition, frequency response functions and time domain analyses
such as cross correlation can also be adversely affected.

4.4.3.2 Description and Mechanism of Aliased Data

Figure 4.5 illustrates three sine waves, each one simultaneously sampled by the A/D converter, If
the plots were laid over each other, the sampled points (indicated by the symbol X) would all lie
on top of each other. A computer would reconstruct them into the same sine wave as the middle
plot, The middle plot could be real data or could be aliases of the other two, or aliases of a theo-
retically infinite number of sine waves.
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FIGURE 4.5 — SIMULTANEOUS SAMPLING OF THREE SINE WAVES.

The frequency of the top sine wave is nine times the middle sine wave, while the lower one is four
times the middle one. Once the data is sampled, the computer has no way of distinguishing be-

tween the aliased data and the real data. The computer will reconstruct the data to the lowest
frequency to fit the data points.

Figure 4.6 below, shows how aliased data would appear in a continuous power spectral density
(PSD) plot where data from higher frequencies are aliased down to the frequency range of interest.
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FIGURE 4.6 — Power SPecTrRAL DensiTy AUASING. The left hand plot shows the true spec-
trum, while the right hand plot shows the allased spectrum as a result of folding.

Frequency folding from data above the Nyquist frequency occurs in an accordion-pleated pattern
as shown in Figure 4.7, Data sampled at integral multiples of data between O and the Nyquist fre-
quency will appear In the frequency range of interest, as shown. If, for example, the Nyquist fre-
quency is 100 Hz, data at 30 Hz would be aliased with data at 170, 230, 370, 430 Hz, etc. The
dashed line crossings represent these frequencies.
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Ficure 4.7 — DATA FoLDING RELATIVE TO THE NYQUIST FREQUENCY.

Data which can be aliased must be removed prior to sampling. There are two methods which can
eliminate aliased data:

(1) The use of high quality anti-aliasing filters,

(2) Higher sampling rates than all data frequencies, on the order of at least 5 to 10 times the
highest significant frequency,

The advantages and disadvantages of these two methods are discussed below,

4.4.3.3 Methods for Avoiding Aliased Data

There are two methods that can be used to eliminate allased data. The first method utilizes high-
quality, low-pass anti-aliasing inters. When properly chosen and applied they eliminate the pos-
sibility of aliased data, In the second method, an unsophisticated low-pass filter with a high cutoff
frequency f,1s used and the data is sampled at a higher rate such that no data can exist above
the Nyquist frequency (over-sampled), and then digitally filtered and decimated. While both meth-
ods provide valid data, the first is preferred where the presence of unknown high frequency sig-
nals can be aliased into the real data. If the existence of high frequencies are not a problem, then
the second method is preferred. Analog anti-aliasing filters are more expensive than digital anti-
aliasing Inters, and the control of digital filter parameters is far superior.

Anti-Aliasing Filters — Analog filters are used prior to data sampling because, once sampled,
aliased data cannot be separated from true data, Digital filters alone will not eliminate aliased
data because the data must be sampled prior to digital filtering. Two general types of filters are
available for anti-allasing; 1) constant amplitude filters, and 2) linear phase inters,

Constant amplitude filters, e.g., brickwall (elliptic) and Butterworth, have the advantage of a rela-
tively flat frequency response within the pass band, However, if not chosen properly they can ex-
hibit large phase errors in the region of cutoff and have greater overshoot and ripple in response
to a step function input,

Phase response of Butterworth filters is linear to approximately half of the cutoff frequency, but
overshoot and ripple cannot be eliminated. If possible, Butterworth filters should be restricted to
half the cutoff frequency in those cases where intra-channel phase response is a factor.

Properly designed brickwall filters can be obtained which have the best compromise between roll-
off, intra- and inter-channel phase response, overshoot and ripple, Intra-channel phase preserva-




tion ts important in processing transients, e.g., shock response spectra. For cases in which inter-
channel phase is important, phase response between channels must be closely matched.

Ltnear phase filters, e.g., Bessel, exhibit very good phase response even beyond f,, but the ampli-
tude response starts to fall at approximately half f,. Overshoot and ripple response to a step
function is minimal over the frequency band. The rate of filter attenuation beyond f, is less than
the constant amplitude filters, requiring htgher sampling rates to achieve the same anti-alias re-
jection as constant amplitude filters,

Anti-Allas Filter Selection Methodology — There are three variables to be considered in the selec-
tion of anti-aliasing filters. These are, the rate of filler roll-off, the dynamic range of the system,
and the sampling rate. The selection of one affects the others, so all must be considered together,
Figure 4,8 {llustrates filter selection with ideal constant amplitude filters, The method and result
is the same for linear phase filters, except that filter roll-off beyond f, is not as great as in the
case of constant amplitude filters. The selection of filter type should be based on data acquisition
system parameters, and data processing and analysis requirements in each case.

The filter must be chosen to provide sufficient rolloff to attenuate aliased data below the noise
floor of the system where aliased data folds back within the data bandwidth frequency range. This
is usually fixed In the system so the filter characteristics are chosen to accommodate the signal to
noise ratio (S/N). In addition to data foldover, the filter response is effectively folded over also.

= 5

N\ /

Filt —_— I / Fil

ilter , ter — .

Response Je l ) Sampling Rest nse Je : Sampling

d I N Frequency i Frequency

/ / /
Nolise Floor } Noise Floor
/
-Log Frequency l -Log Frequency
Brickwall Filter Butterworth Filter

Ficure 4.8 — ANTI-ALIASING FiLTer SeLECTION ExampLes, The dashed lines represent the
typical rolloff for the “folded” filters. The filter rolloff rate is compared to the system S/N at
the frequency where the anti-allasing filter response crosses the system noise floor,

The minimum sampling rate is set to at least twice the rolloff/noise floor crossing frequency. Even
for the sharpest rolloff filters, the sampling rate should not be less than 2,5 ttmes the data f,.

If a white noise distribution is assumed, the S/N within the narrow resolution bandwidth of the
analyzer can be considerably less that the data system bandwidth, because the energy in a nar-
row filter is less than a wide filter for noise of the same spectral density, The spectral analysis
amplitude noise floor can be lower than the total system noise floor. This S/N is a function of fre-
quency, In addition, the analog front-end and anti-aliasing filter may not have as much S/N as
the data acquisition system, This can occur when the data acquisition system is designed to
make use of the S/N available for large digital word lengths. For example, a sixteen bit word
length provides at least 90 dB of S/N,

*Alias Elimination by High Sampling Rates — Data can be sampled at frequencies higher than the
highest frequencies in the data sample. This presupposes a knowledge of the frequency distribu-




tion of the data sample, Current data systems are of high quality, but may suffer from spurious
inputs from unintentional manufacturer design flaws such as intermodulation distortion,
Interrnodulation can occur between telemetry bands, crosstalk between data channels, and
crosstalk between heads on &an analog recorder, etc. A high frequency spectral analysis may be
requtred to determine whether spurious signals can be allased down to the data frequency band
from higher data frequencies than expected. While this is a valid method to eliminate aliases, the
uncertainty of the data content above the sampling rate poses some risk.

After the data are sampled, digital filters and decimation are used to limit the data to the desired
frequency range. Control of digital filter parameters is far superior to that of analog filters. For
that reason, the method is preferred by some data processing experts.

4.4.3.4 Phase Distortion

Phase distortion is the deviation from a straight line of the phase in a frequency vs. phase plot.
Phase distortion of a complex waveform translates into amplitude distortion, In computing the
power spectral density of a time history, the relative phase of each of its components does not

change the value of the data. Yet, the amplitude distortion can cause an error in the computation

of shock response spectrum, All filters in the data acquisition and analysis systems will affect
phase distortion and therefore, the shock response spectrum. These errors will be a function of
the relative amplitudes of the spectral components, the frequencies of the spectral components,
and the phase in different transients, Because of the random distribution of the amplitudes, fre-
guencies, and phase in different transients, each time history will exhibit errors that will result In
different errors for each. If a given time history is repeatedly analyzed (and no other errors exist)
then the data will consistently have the same errors and the same shock response spectrum will
be computed each time, This will instill a false sense of confidence in the user.

444 Interface Errors

The equipment and cabling of a measurement chain is characterized by electrical properties such
as resistance, capacitance, etc. These input/output properties may change as either a result of
connecting equipment or the environment, Typical error sources in this category include loading,
CMV, noise, cabling, and crosstalk, Many of these errors. caused by loading, CMV, etc., are ad-
dressed during design and analyses used to establish specifications, such as common mode re-
jection ratio (CMRR), crosstalk specifications, input/output impedances, etc.

4.4.5 Environment Induced Errors

Variations in temperature may affect the measurement system by introducing error sources such
as offset and gain, These errors are generally minimized during the design process through anal-
yses and subsequent specification of temperature coefficients, and specifications for environmen-
al conditioning of temperature sensitive equipment, Also, the designer must include analyses of
other environmental factors such as humidity and altitude (pressure) depending on the specified
end use of the system.

4.4.6 Calibration Induced Errors

Calibration equipment and procedures are usually incorporated into a system during design to
provide a way to quantify and eliminate bias (fixed) errors. While there are errors associated with
the calibration process, these may generally be considered negligible if the ratio of permissible




uncertainty (tolerance) of the calibration to calibrating equipment uncertainty is about four or
more.

The rationale behind this assumption is as follows. Let e, represent the permissible uncertainty of
the calibration and ¢, represent the calibrator uncertainty that is given as &, <0.25¢,. Assuming
the errors are statistically independent, they root-sum-square (RSS) as follows, where &.. is the
observed error in the calibration process:

2
_ 2
€= \/81 +(0'25£1)
€= 1.03.91 ,

The error induced using a calibrator that is about four times as good as the system being cali-
brated s about 3 percent of the system error,

If the accuracy ratio of the calibration standard is not sufficiently high, then the uncertainty as-
sociated with the standard is included as an error source in the determination of bias uncer-
tainty. A more complete discussion is given in Sections 5.1 and 5.7,

4.4.7 Data Reduction and Analysis Errors

Correlation of data reduction methods and the characteristics of the measurand must be an
important part of the destgn activity. The application of software must be well understood to pre-
vent errors from such sources as misapplied algorithms, truncation and roundoff. The potential
for software induced errors during data reduction cannot be ignored, The software issues dis-
cussed in Section 5.9 should be given full consideration.

4.4.8 Operator Errors

Human errors, especially in the operational phase of the work, maybe a significant error source,
This is particularly true if manual data acquisition methods are used. Human errors may cause
gross mistakes that will show good data points as outliers, which might be removed erroneously.

4.4.9 Error Propagation

Often, multiple measurements are needed to establish a parameter. For example, consider the pa-
rameter Specific Impulse that is computed based on measurements of thrust and propellant flow.
Since there is an uncertainty associated with each of these measurements, there is an uncer-
tainty associated with the parameter Specific Impulse. The Taylor Series Expansion is a numerical
technique that ts often used to describe the relationships between individual measurement uncer-
tainties and parameter uncertainty at an operating point.

Consider a parameter F that depends on several measurements denoted M,

F=f(M. Mg, My) . (4,1)

To a first order approximation, the change in the function F, denoted éF, is related to the changes
in the measurements M;, denoted AM; as follows:
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where the partial derivatives [9Miwill be evaluated at an operating point, This is a simplification
of the Taylor Series Expansiontt is assumed the partial derivatives exist at the point and that the
remainder term is zero. Since measurement uncertainty can, for practical purposes, be consid-
ered a randomly distributed variable, it has been a common practice to change Eq. 4.2 as follows:
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where the AM; are interpreted to be measurement uncertainties.

From a design viewpoint, the parameter uncertainty, §F, is a stated requirement along with the
parametric relationship F. The unknowns are the allowable individual measurement uncertain-
ties, AM..

Since Eq. 4,3 has n unknowns, a unique solution does not exist, Equation 4,3 gives the designer
a mechanism for budgeting uncertainties to each of the n measurements. The examples in
Sections 4.5.6 and 4.5.7 are prepared to illustrate the technique.

45  Combining Errors

Once we have determined the sources of the various measurement system errors, we need to have
a method for quantifying them and combining them into a single estimated uncertainty value,

45.1 Error Classifications

The various error sources of a measurement process can be categorized as either blas errors (fixed
or systematic errors) or precision €rors (random errors,) The bias error is the difference between
the mean of the measured values and the measurand value shown in Figure 4.9, The magnitude
of this error is important if the absolute accuracy is required. If repeated observations of the mea-
surement are made, the observed values will appear to be randomly distributed about the mean
value. The repeatability of the measurement depends on the precision errors. If, at a specific value
of the measurement, the bias and precision errors are known, they can be combined to establish
an estimate of the uncertainty associated with the measurement.
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FIGURE 4.9 — COMPONENTS OF MEASUREMENT UNCERTAINTY.




Unlike experimental approaches that can be used to quantify a specific measurement system’s er-
ror, the designer’s task is to:

. Estimate the uncertainties of a proposed measurement chain by analyzing the
measurement process

« Quantify the error sources using manufacturer’s specifications, analysis, and/
or engineering judgment

« Combine the error source uncertainties to establish an estimate of measure-
ment uncertainty.

Estimates of standard deviation or confidence limits usually are difficult to obtain from manufac-
turer’'s literature, as are performance time limits. It is recommended that the manufacturer’s en-
gineering staff be contacted directly for this information.

To aid the designer, Table 4.1 is provided as a guide for interpreting and establishing estimates of
uncertainties for the various error sources.

TABLE 4.1

Error Source Classifications

ELEMENTAL ERROR ESTIMATION

ERROR CLASSIFICATION METHOD

SENSING ERRORS

Spatial Bias Engineering Judgement
Interaction Bias Engineering Judgement
Probe Bias Engineering Judgement
INTRINSIC ERRORS

Offset Bia Manufacturer's Specs
Gain Bias Manufacturer's Specs
Non-Linearity Bias Manufacturer's Specs
Hysteresis Bias Manufacturers Specs
Repeatability Precision Manufacture% Specs
Drift Precision or Bias Manufacturer's Specs
Noise Precision Manufacturer's Specs
Source Current Bias Manufacturer's Specs
SAMPLING ERRORS

Aliasing Bias Application Analysis
Aperture Bias Application Analysis
Resolution Bias Manufacturer's Specs
INTERFACE ERRORS

CMV Bias or Precision Application Analysis
Noise Precision Application Analysis
Cabling Bias or Precision Application Analysis
Crosstalk Bias or Precision Application Analysis

ENVIRONMENT INDUCED ERRORS
Offset Bias or Precision Application Analysis
Gain Bias or Precision Application Analysis

I
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4.5.2 Common Units and Confidence Levels

Different units such as % Full Scale, % Reading, uV RTI, mV RTO, etc., are used by manufactur-
ers to specify equipment performance. Therefore, it is necessary to pick a common unit and to
convert all error source uncertainty, For a specific application with candidate equipment, this will
call for establishing operating conditions such as signal levels, gain, and bandwidth parameters.
Once selected, all error source uncertainty should be converted into the same units.

The uncertainty value should be of the same confidence level, Manufacturer specs
can be 1, 2, or 3 6, and typically, engineering judgment is a 2 ¢ estimate. To
achieve a meaningful combining of error sources, they must be converted to com-
mon units and confidence levels.

4.5.3 Establishing the Total Bias Estimate

At a specific measurement value, the various biases listed in Table 4.1 are established and com-
bined to provide the measurement’s total bias, By. At a different measurement value, these ele-
mental biases are in themselves variables with unknown distributions.

From a design viewpoint, the error sources reported by manufacturers as specifications represent
ranges (e.g., non-linearity of +0. 1°A FS.) The uncertainty for any error source can be interpreted to
be the specified value with a confidence level depending on the standard practice of the manufac-
turer. The confidence level of the uncertainty must be determined for each bias source.

There are various ways of establishing estimates of how these bias error sources such as non-lin-
earity, hysteresis, offset, etc., combine to form total bias. These include summing the absolute
values of all bias error sources to form total bias and applying the Root-Sum-Square (R SS)
method. For example, the RSS can be used to establish an estimate of total bias as follows:

Bias, BT= b2 + bg2 + -+ b’ (4.4)

While there is no mathematical basis for using the RSS method to establish BT unless all terms
are statistically independent, the rationale behind using this method is that it does provide for
some error cancellation, It is unreasonable to assume all the biases are cumulative. In practical
measurement chains, there will be a canceling effect because some errors are positive and some
are negative.

In combining nonsymmetrical bias limits, apply the RSS method to the upper limits to determine
the combined upper limit. The lower limits should be treated likewise, The result will be nonsym-
metrical bias limits,

Using the above methods of combining biases to establish an estimate of total bias is considered
conservative, but the effects of calibration methods have yet to be considered. It is here in the de-
sign process that calibration and the frequency of calibration are established based on a consid-
eration of the biases and their magnitudes, The estimate of total bias would then be adjusted ac-
cordingly.

The concept of the total bias is relevant to the above discussion. The total bias is the difference
between the measurand’s value and the mean of the measured value, A calculated total bias un-
certainty is derived during design activities from manufacturer's data of bias error sources such
as shown in Table 4.1, The calculated total bias is dependent on sources that include unknowns,




Further, the measurand's value is not known, so there is usually no rigorous equation that de-
fines the bias error. The calculated bias, calibrations, verified manufacturer’'s data, and compar-
isons with other measurements by independent methods will help the effort to estimate the total
bias, But, generally the estimate of total bias error must be based on engineering judgment.

454 Establishing the Total Precision Estimate

A review of the error classifications in Table 4.1 shows that the errors generally classified as pre-
cision errors are repeatability and noise. Of these, noise is generally the dominant uncertainty.

Within a measurement system, the primary noise sources include noise generated by thermal
processes within conductors and semiconductors, white noise generated by thermal processes
within resistors, and systematic noise such as that caused by line frequency, power supply ripple,
electromagnetic interference, digital logic, etc. Active system elements such as amplifiers are
principal sources of noise, Since the magnitude of noise depends on both gain and bandwidth,
the manufacturer’s specifications should include a measure of the magnitude of the noise and the
corresponding gain and bandwidth.

The RSS technique is also the method commonly used to establish an estimate of total precision.
The mathematical basis assumes these elemental precision uncertainties are randomly dis-
tributed and statistically independent. Thus,

Precision, St = \/312 +59%+ ...+ s7n : (4.5)

This is also called the precision index. Note that since these are random variables, the magnitude
of each precision uncertainty is generally expressed in terms of standard deviation (i.e., 1 ¢ rep-
resents 68.3°4, 12 ¢ represents 95,5740, 13 o represents 99.7%, etc.) Thus, precision errors need to
be adjusted to the same sigma level before they are combined,

4.5.5 Establishing the Total Uncertainty Estimate

Measurement uncertainty, U, is a function of bias and precision, To combine the two separately
estimated uncertainties, two methods are currently accepted: Uypp and Uggg -

Uspp = *(BT+ taST) .6)

too =B, +(e5,F o

where t denotes the Student T statistic and a is the confidence interval,

If the bias and precision error estimates are propagated separately to the end test result and the
equation used to combine them into uncertainty is stated, either Uypp, or Ugss Can be used,

Monte Carlo simulations were used in studies to compare the additive (Uypp) and root-sum-
squared (Uygs) values. The results of the studies comparing the two intervals are:

o Uypp averages 99.1 % coverage while Uggs provides 95% coverage based on bias limits as-
sumed to be 95% (2 ¢ for normally distributed biases and 1.65 o for rectangularly dis-
tributed biases.




o Uypp averages 99.7% coverage while U,gg provides 97.5% coverage based on bias limits
assumed to be 99.7% (3 o for normally distributed biases and 1.730 for rectangularly dis-
tributed biases.

« Because of these coverages, Uypp Is sometimes called Ugg and Ugpggis called Ugy,.
« If the bias error is negligible, both intervals provide 95°A confidence.

« If the precision error is negligible, both intervals provide 95% to 99.7% depending on the
assumed bias limit size.

«  When the interval coverages are compared, Uspn provides a more precise estimate of the
interval size (98% to 100%) as opposed to 93% to 10096 for Ugss-

The “Student T“ value is a function of the degrees of freedom (v.) The degree of freedom v is the
number of observations in the sample (the sample size) minus the number K of population parame-
ters which must be estimated from these sample observations. For large samples, (i.e., N > 30), {4
is set equal to 2. It is acceptable practice for ty to be taken as 2 during the design process. This
corresponds to a 2 sigma (95.45%) confidence level,

The key procedure in establishing total uncertainty estimates is as follows:

1. Study the measurement system and data algorithm to figure out which
elements must be considered in the uncertainty analyses.

2. For each measurement, make a list of every possible error source and
estimate its uncertainty interval corresponding to a set confidence level,

3. Classify the uncertainties according to the categories of bias and precision,

4. Propagate the total bias and precision index to the end measurement results
as described earlier.

5. Calculate total uncertainty by one or both methods shown above.

6. Document the bias, precision, and total uncertainty estimates and the
uncertainty formulas used,

Documentation of the methodology used is as important as the choice of
methodology.

4.5.6 Example-Budgeting Measurement Uncertainty in the Design
Process

Consider the requirement to develop a measurement system to measure the velocity of air in a low
speed duct with a Pitot static probe (see sketch below.) Using Bernoulli's equation for incompress-
ible fluids, the velocity, V, is related to the difference between the Pitot pressure and the stream
static pressure, which here is g, and to fluid density, p, as follows:

V=y2q/p

where g is in units of pascals (N/m?2), p is in units of kg/m3, and V is in units of m/see,
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The requirement is that the uncertainty in velocity must be less than + 1 % Vat 36 when q equals
2400 Pa. For this example, assume fluid density, p, is given as 1.000 kg/m3, How accurate must
the q measurement be to achieve 1% V?

Approach

Using error propagation, the expression for the uncertainty in V,(8V)

ov. ¥ (ov. Y
‘SV'\/('éa“") *(a—p‘”’]

Since we have one variable, the above simplifies to:

v =35

The derivative is;

2 -1
—=(2qp) 2 .
= (29)

At this dynamic pressure, %:0.0144. V=69,3nVsee, and 6 V=11% = 10.693 m/see.

Thus, the maximum allowable error in the g measurement is:
Aq = 0.693 70.0144 =48 Pa or + 2°A Reading, at 3 sigma,
An alternate method of determining the design requirement measurement of qis as follows:

v 1
From —=|2 2,
dq [2p4]

multiply by dg and divide by V

and therefore, the measurement requirement for qis 2% for a 1% measurement of V.

N O —
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Interpretation of Solution

The computed uncertainty in g of 2% Reading at 3¢, is the specification for errors in the mea-
surement including sensor, data acquisition, etc., and applies only when q=2400 Pa,

Note — While calculus was used to establish the derivative (the sensitivity of V to
changes in g), this could have alternatively been established numerically as follows:

av, Change in V /Change in g
dq
Let g change from its base value of 2400 by 1%. Thus,
Vo= ,/2q0 /p= \,2(341—092 =69.28 m/sec
q, =999, =.99(2400) =2376 Pa

(2376)
V= lqu /p =\/2_T—2 .68,93 n /see

av _ Vo=V, 69,28 _68.93

dg q,-q, 2400-2376 00145

4.5.7 Example-Establishing Maximum Allowable Errors

In this example, we specify that fluid density, p, equals 1,000 Kg/m3. Typically, fluid density is
given by

i
RT
where P is fluid pressure in pascals, T is fluid temperature in Kelvin, and Ris the gas constant,
For air, R=287 J/kgK. Using error propagation, establish the maximum allowable errors in the

three measurements (q, P, and 7y when P equals 96,000 Pa and T equals 334,5 K to achieve +1%
(30 in fluid velocity, V.

Approach

p:

Apply Eq. 4.3 to establish the relationship as follows:

fov, ¥ (ov, ¥ (ov ..V
= (Laa) +(Zar] +(Lar)

where
%:;:—2\:&0.0144 (from example 4,1)
%: — 5 -0.00036
%’:% =0.104,




Thus,

10.693 = 1/(0.0144Aq)? + (~0.00036AP)° + (0.104AT)? .

Since there are three unknowns, a unique solution does not exist, Still, maximum error limits
can be established for each measurement by specifying two variables to be zero and solving for
the third.

Therefore, the maxtmum allowable errors at 3 sigma are:
Ag = 48 Pa

AP = 11925 Pa
AT= 16.7°K .

Interpretation of Solution

These are maximum allowable errors for each measurement if the errors in the other two are zero:

and include sensor, data system, etc. In practice, the designer would establish error budgets for
measurements less than these maximums and use the above equation to ensure compliance with
the 1% Vat 3o specification, The designer would also take into account the time requirements
over which the maximum allowable errors must not be exceeded, This, then, would generate the
MTBOOT/MTBF target which the design is to meet.

4.6  Constructing Error Models

When we measure a physical attribute by any means (e.g., eyeballing, using off-the-shelf instru-
ments, employing precise standards, etc.) we are making an estimate of the value of the quantity
being measured, Two features of such estimates are measurement error and measurement uncer-
tainty. The terms error and uncertainty are often interchanged, but there is a subtle distinction
between the two, For example, the result of a measurement after correction can unknowingly be
very close to the unknown value of the measurand, and thus have negligible error, even though it
may have a large uncertainty.

4.6.1 Measurement Uncertainty

Measurement errors are never known exactly. In some instances they maybe estimated and tol-
erated or corrected for, In others, they maybe simply acknowledged as being present, Whether an

error is estimated or acknowledged, Its existence introduces a certain amount of measurement
uncertainty.

UNCERTAINTY — a parameter, associated with the result of a measurement, that
characterizes the dispersion of the values that could reasonably be attributed to
the measurand.

The assessment of uncertainty requires critical thinking, intellectual honesty, and professional
skill, The evaluation of uncertainty is neither a routine task nor a purely mathematical one — it
depends on one’s detailed knowledge of the nature of the measurand and of the measurement
methods and procedures used, The utility of the uncertainty quoted depends on the understand-
ing, critical analysis, and integrity of those who contribute to the assignment of its value.
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Some sources of uncertainty — not necessarily independent — are:

'

® Incomplete definition of the. measurand and imperfect realization of the definition of the
measurand

e Sampling — the sample measured may not represent the defined measurand
® Instrument resolution or truncation
e Values assigned to measurement standards and reference materials

e Values of constants and other parameters obtained from external sources and used in the
data algorithms

e Approximations and assumptions incorporated in the measurement methods and proce-
dures

e Variations in repeated observations of the measurand under apparently identical condi-
tions

e |nadequate knowledge of the effects of environmental conditions on the measurement pro-
cedure, or imperfect-measurement of environmental conditions, or unknown uncertainties
of the measurement equipment used to determine the environmental conditions.

Mistakes in recording or analyzing data can introduce significant unknown error in the result of a
measurement, Large mistakes can usually be identified by proper data review — small ones could
be masked by or even appear as random variations,

In instances where the value of an error is estimated, the uncertainty in the estimate can be used
to indicate a range of values surrounding the estimate. In instances where the error is not esti-
mated but simply acknowledged, an uncertainty estimate serves to define a range of values that is
ordinarily expected to contain the error, whatever its value might be, In both cases, the uncer-
tainty estimate is made to establish regions of values that bound the error with some level of
probability or “confidence,” The limits of such regions are referred to as confidence limits. ‘rhe
term “expanded uncertainty” is also used.

46.2 Measurement Error

The difference between the medsurand value® and the measurement estimate of this value is re-
ferred to as measurement error.

ERROR — the difference between the result of a measurement and the value of
the measurand.

Measurement error for a given measuring artifact and measurand may be bias (systematic) or
precision (random). Bias errors are classified as those whose sign and magnitude remain fixed

In accordance with the 150/TAG 4/WG 3 Guide to the Expression of Uncertainty in Measurement, @ measurand
s defined as “a specific quantity subject to measurement. As defined, a measurand s a specific quantity and
as such, is definite, certain, uriique, orgartlcular. The definition implies that ttﬁ value of a measurgnd 1S }he
trot h,” Toaddtheterm“true®, “value of a measurand” IS redundant, Therefore, the term “true value of a

measurand” (often abbreviated as “true value”) s generally not used in this publication. Where used, the
terms “value of a measurand” (Or of a quantity), “true valué of a measurand* (Or Of a quantity), or simply
value are viewed as equivalent.

'true




over a specified period of time or whose values change in a predictable way under specified
conditions, Precision errors are those whose sign and/or magnitude may change randomly over a
specified period of time or whose values are unpredictable, given randomly changing conditions.

Typically, error estimates are attempted only for bias errors. This does not mean that all bias er-
rors can be estimated, It may not be possible to estimate the value if:

(1) the sign and magnitude are either not measured or not communicated:

(2) the sign and magnitude vary in an unknown way over periods of time between
measurement or

(3) both (1) and (2).

An example of an unknown bias error is the bias of a measuring attribute of an instrument drawn
randomly from a pool of like instruments where its sign and magnitude are unknown. In such a
case, all that can be done is to form a distribution of values, weighted by probability of occur-
rence, that attribute biases may assume, Estimates of these probabilities may be based on prior
calibration or test history data taken on like instruments or may derive from heuristic or engi-
neering estimates based on stability and other considerations,

The designer’s objective is to configure and specify the individual system components so the inte-
grated performance satisfies the overall requirements including the targeted measurement accu-
racy. A mechanism is needed that will help the analytical evaluation of the candidate system’s
performance, This is traditionally done using error models.

Error models are simple schematic illustrations of a measurement process used to:

« ldentify the error sources associated with the measurement equipment (i.e., the published
Intrinsic errors such as nonlinearity, gain error, hysteresis, etc.)

« Identify and quantify installation related errors such as those owed to the environment,
CMV, electrical loading, and cabling in addition to spatial and disturbance errors

« Identify and quantify application related errors such as those caused by improper sam-
pling, improper data collection and reduction.

The specific steps used in constructing an error model are:

1. Draw a simple schematic diagram of the process showing major hardware and
software components.

Establish signal levels. ,

Identify and quantify intrinsic equipment errors and confidence estimates.

2

3

4. Choose consistent units and confidence levels,

5. Identify and quantify installation related errors and application related errors.
6

. Combine errors to establish estimate of uncertainty.
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47 Example—Developing a Temperature
Measurement System

Consider the problem of measuring the temperature of a moving fluid which nominally is in the
range of 30-70 ‘C. Past experience has shown that a Chromel/Alumel thermocouple is useful for
measurements in the range from O to 1260 “C. Therefore, it has been decided that an ISA Type K

Chromel/Alumel thermocouple configured in a grounded sheathed probe through a bulkhead into
the fluid stream will be used.

The following specifications have been established for this measurement:
« Range of Temperature t0 be Measured: 20-100 “C
e Bandwidth: 0-10 Hz
« Uncertainty: +3“C, 30 at 60 “C, for one year

«  Principal Mode of Heat Transfer.  Natural convection from fluid to probe, conduction from
probe to thermocouple

« Measurement Sensor: ISA Type K Chromel/Alumel thermocouple.

4.7.1  Temperature Measurement System Equipment Selection and
Specification Interpretation

The basic elements comprising the example temperature measurement system are shown in the
following sketch.

MEASURAND " DATA ACQUISITION SYSTEM(DAS)
CHROMEL | \\ Cu
77

ALUMEL | \ Cu >
rdd i

REFERENCE LOW PASS AD DATA
THERMOCOUPLE JUNCTION FILTER AMPLIFIER  CONVERTER PROCESSOR

MEASUREMENT SYSTEM

Since thermocouples are differential measurement devices, the emf input to the measurement
system depends on the emf generated by the thermocouple and the subsequent emf generated at
the reference junction. For this example, the equipment items needed are the thermocouple, the

reference junction, a system to measure voltage, and a method of correlating measured voltage to
temperature,

Thermocouple

The accuracy of a thermocouple depends on the type and homogeneity of wire material, the grade
of the wire, and the temperature range in which it will be used. Most thermocouples are nonlinear
from the low to high limits of their nominal working range, however most have good linearity
when used in a reasonably narrow portion of the thermocouple material’s total range.

For best results, thermocouples should be calibrated before using. They should be calibrated at
the temperature range of interest to lessen and quantify errors due to variations in materials and




manufacturing, Calibration will allow for careful selection of thermocouples which may signifi-
cantly reduce the measurement’s uncertainty.

The thermocouple’s indicated vs. measurand temperature can be influenced by installation tech-
niques, Complicated heat transfer effects produced by the measurand, protective housing, mea-
surand vessel, environment, and measurand dynamics can have profound impact on the mea-
surement accuracy. If the measurand is a moving gas, several temperatures may exist simultane-
ously making it necessary to decide what is being measured. It is not good practice to correct a
poor installation by the use of computed correction factors, For proper temperature measure-
ment, one should make a thorough analysis of each installation.

A Type K (Chromel-Alume!) thermocouple is useful for measuring temperatures from O to 1260 “C,
The manufacturer’s published Limits-of-Error for a Type K thermocouple over the temperature
range 20-100 “C is $2.2 “C, Because of material impurities and variability in the manufacturing
process, the actual emf vs. temperature characteristics may differ from the published characteris-
tics for the manufacturer’'s reference Type K thermocouple. This is interpreted as bias error. The
manufacturer does not provide any information on the confidence level associated with the stated
uncertainty interval, From many calibrations of wire samples, the user has established the confi-
dence level of the uncertainty is 3.

Often, the measurement uncertainty requirement is impossible to meet, If the requirement had
been, for example, 1 “C, 3 sigma, and given the manufacturer’s published data of +2.2 ‘C at 20-
100 “C for a, reference thermocouple, segments of a roll of thermocouple wire would have to be
individually calibrated to find lengths that would reduce the Limits-of-Error to less than +1 “C, If
this cannot be accomplished, the measurement uncertainty specification must be relaxed,

Reference Junction

It is critical that the reference junction temperature be known exactly. The typical specifications
for reference junctions include an accuracy statement for the junction temperature, and for mul-
tiple thermocouple junctions, a statement of temperature uniformity, Typical uncertainties pub-
lished are 10,25 “C for junction temperature and 10, 1 “C for uniformity, Usually, the manufac-
turer is silent on the uncertainty confidence level, Experience has shown the confidence level to
be between 2 and 3. The uncertainties are interpreted as bias errors,

Data Acquisition System

Using a nominal sensitivity for Type K thermocouples of 40 uv/°C, the voltage range correspond-
ing to a temperature range of 20-100 “C is 0.8 to 4,0 mV. The data acquisition system must be
capable of measuring time varying phenomena of these magnitudes at frequencies from zero to 10
Hz. The following specifications are considered to be representative for a quality multi-channel
data acquisition system, Here the manufacturer specifies 99?40 (~30) confidence level for uncer-
tainty values,

«  Gatn Accuracy:  *0.05% FS +0.003% /“C

« Non-Linearity: +0.02% FS

*  Time Zero Stability: 15 pv relative to input (RTl) *1.25 mvV relative to output (RTO)
«  Temperature zero Sability: *0.5 pv/°C RTI £0.1 mV/°C RTO

e Zero Offset: 110 v, Channel-to-Channel

« Noise: 18.5 uV RTI £0,756 mV RTO, +3¢ with 10 Hz filter installed

¢  Resolution: *0.003940 FS
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« Common Mode Rejection Ratio: 120 dB
«  Static Crosstalk 120 dB

Interpretation of these errors is provided below,

4.7.2 Example Temperature Measurement Systerr Error “Model

This example illustrates the traditional process of developing_an error model for the temperature
measurement system and establishing an estimate of uncertainty.

NOTE — The example is repeated in detail in Appendix G. There, the reader will
find some techniques differing from the traditional approach taken below, a more
detailed treatment of the identification of error sources, and development of math-
ematical expressions for establishing the estimate of uncertainty.

STEP 1. Draw a simple schematic diagram of the process.
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STEP 2. Establish signal levels.

Because of a nominal sensitivity for Type K thermocouple of 40 u@v/°C, the voltage corre-
sponding to 20-1.00 “C is 0.8-4.0 mV.

An amplifier gain of 1000 is chosen for the measurement system, This provides an input
voltage to the analog-to-digital converter of 0.8 -4,0 V. The selected converter has a full
scale input of *10 V.

STEP 3. Identify and quantify intrinsic equipment errors and confidence levels.
Gain Accuracy *0.003% /“c, *0.05% FS  [Given]

Non-Linearity 10.02% FS  [Gtven]




Time Zero Stability: +5 uv RT1 11.25 mV RTO  [Given]

Using a gain of 1000, the time zero stability error is converted to % FS by multiplying
the RTI component by 1000 and summing this with the RTO component,

Time Zero Stability: +0.0625% FS

Temperature Zero Stability: 0.5 uV/°C RTI +0.1 mV/°C RTO  [Gien]
This error can be restated in term of % FS as:

Temperature Zero Stability: +0.006% FS/°C

Zero Offset: #10 uv, Channel-to-Channel  [Given]
This error can be restated in terms of % FS as:

Zero Offset: #0.1% FS

Noise: 8.5 uV RTI £0.75 mV RTO  [Given]

This error can be stated in % FS by RSSing the components where the RTI component
is adjusted by gain,

Noise: +0.085% FS

Resolution 0.003% FS [Given]

Confidence level for uncertainties is 30, based on conservative engineering estimates and experi-
mental measurement data analysis,

STEP 4. Choose consistent units and confidence levels.

For this example, it is desirable to use “C to represent all errors, Since the thermocouple and ref-
erence junction are already in °C, it is only necessary to convert the measurement system errors
into “C, Since the system gain has been picked to be 1000, the maximum input voltage can be 10
mV (computed by dividing the converter’s full scale input of H0 V by the gain of 1000.) Given a
nominal sensitivity of 40 uv/°C, the full scale input of 10 mV corresponds to about 250 “C. The
above specifications can be restated as follows:

Gain Accuracy 0. 125 “C , *0.0075 °C/°C
Non-Linearity: +0.05 ‘C
Time Zero Stability: +0, 15 “C

Temperature Zero Stability: +0.015 °C/°C
Zero Offset: £0.25° C, Channel-to-Channel
Noise: #0.2 125 “C
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Resolution: +0.0075 °C

All the above error sources have been estimated to a 3 sigma confidence level or adjusted to 3
sigma where higher or lower confidence levels were used.

STEP 5

STEP 6.

: Identify and quantify Installation and application related errors.

Common Mode Voltage (CMV)

The error, &y resulting from a common mode voltage of em can be computed using the
CMRR [common mode rejection ratio) specifications as follows:

G-eemp
log™ L (CMRR / 20).

Cemo =
For a CMRR of 120 dB (Gwwen] and an estimate of CMV of 10 V, the error is &y = 0.01V
which is O. 1°A FS or 0.25 ‘C.
Static crosstalk

This computation is similar to CMV where an estimate of maximum voltage between
channels is used, Assuming 10 V maximum, the error is the same as CMV.

Temperature Induced Errors

The effects of temperature on both gain and zero offset can be computed using the tem-
perature coefficients stated in Step 4 and an estimate of maximum temperature change,
Assuming a maximum temperature change of 10 “C, gain and offset errors are:

e Thermal Gain Accuracy: +0.08 ‘C
® Thermal Zero Stability 0. 15 ‘C

Combine errors to establish uncertainty estimate.
*  Bias estimate

° Thermocouple: +2.2 “C

. Reference Junction Accuracy: +0.25 ‘C

. Reference Junction Uniformity: +0. 1 ‘C

° Gain Accuracy: 10. 125 ‘C

. Non-Linearity: +0.05 ‘C

. Zero Offset: +0.25 ‘C

. Resolution: +0.008 °C

. CMV: 10,25 ‘C

. Static Crosstalk +0.25 “C

Total bias estimate based on RSS of above: +2.26 ‘C at 3 ¢




. Precision estimate
. Zero Stability' $0. 15 “C

. Noise: f0.21 “C
. Thermal Gain Accuracy: +0.08 “C
. Thermal Zero Stability $0. 15 “C

Total precision estimate based on RSS of above: $#0.31“C at 3 ¢

Since the bias limits were determined to be 30 with normal distribution (99.7%), the uncertainty
estimate is:

Uspp = 1(2.26°C + 2 X 0.31°C) = 12.88 “C with a confidence level of 99.7940

2
Urss =i\/(2.26°c) +(2>< O.31°C)2 = $2.34 “C with a confidence level of 97.5% .

Therefore, either of these uncertainty estimates may meet the 13 “C uncertainty requirement of
the measurement as specified,

The word “may” is used here because, the uncertainty specification was established to be +3 “C,
3o at 60 “C, for one year. Yet, as one can observe, none of the manufacturer’s data specified
confidence levels for uncertainty values in terms of a time element, At this point, critical engi-
neering judgement and uncertainty growth analyses are required to support whether or not the
uncertainty estimates will meet the one year requirement.

The measurement system designer must consider the time duration of the specifi-

cation and be aware that the calibration certification is only applicable at the in-
stant of calibration, In addition, most manufacturer’'s data does not specify confi-

dence levels for uncertainty values in terms of a time duration, The designer must
not overlook this very important aspect when estimating uncertainty, especially for
systems design of remote long-term applications,

The designer should pay particular attention to the material covered in Section 3,2.5 and Table
3.2 regarding the establishment of measurement system reliability requirements as they apply to
mean-time between-out-of-tolerance (MTBOOT).

48  Consideration of Calibration Techniques to
Reduce Predicted Bias Errors

Generally, a measurement system’s predicted bias errors, as established from interpreting manu-
facturer’s specifications and other supporting analyses, dominate the uncertainty calculation,
This is a consequence of using worst case limits to quantify error sources, Bias errors are fixed by
definition, so many of these can be effectively reduced through calibration. The designer’s task is
to review the predicted bias error terms and incorporate calibration techniques within the mea-
surement system such that these can be effectively reduced, if needed, Methods commonly used
include:

* Inserting known stimuli at sensor input (in situ calibration)




+ Inserting known stimuli at measurement system input

« Simulating known inputs (e.g., creating imbalance with Wheatstone bridge configurations
and substituting known resistors for potentiometric measurements such as resistance
temperature devices, or viewing deep-space radiation using a blackbody at a known tem-
perature)

Calibration of individual measuring system components

o  Calibration by use of a reference material having the same general composition as the ma-
terial being measured—for example, using a gas mixture of known composition to cali-
brate a gas analyzer

« Calibrating range by viewing two or more known points (triple point of water and melting
point of zinc.)

Where there is more than one measuring system for a given parameter, relative performance can

be found by interchanging measuring systems relative to the sensors, and by applying SMPC
methods,

49  Consideration of Uncertainty Growth in the
Measurement System Design Process

Immediately following test or calibration, the uncertainty in the recorded value of a measurement
parameter begins to grow in response to several factors, These factors include environmental
stress, usage stress, storage and handling stress, stray emf, vibration and mechanical shock, and

so on. Uncertainty growth reflects shifts in parameter value described by a variety of mechanisms
including

o Linear drift

+ Random fluctuations

« Periodic oscillations

e Spontaneous quantum jumps
» Response to discrete events,

The specific manner in which uncertainty growth is accounted for depends on the
mechanism,

Suppose that parameter values shift because of linear drill Linear drift Is described according to

Y(t) = Y(0)+ «t (4.7)

where Y{t) represents the parameter value after a time ¢ has passed since test or calibration, and «
is the parameter drift rate. In practice, the coeflicientk IS an estimated drift rate, based on engi-
neering or other data that is itself characterized by an uncertainty o,(t) that grows with time (and

other stresses) since test or calibration, Given this, estimates of the parameter value are obtained
from

Y () = Y(0)+ Kt * z40(t) . (4,8)




where

- 2
o2(t)= 62(0)+ 6200) (4.9)

and where z, is the two-sided normal deviate, obtained from a standard normal or Gaussian
distribution table, for a (1-a) x 100% confidence level, The quantity oy 2(0) is the variance in the
parameter value immediately after test or calibration.

A straightforward method for getting the coefficient Is to fit Y(t) in Eq. (4.8) to observed values
for Y() using regressmn analy5|s In this approach, measured values Y}, Y,, Y, are sampled

at various times t,, t,...., t . Using linear regression methods gives
E}(t[ -y, - P .
K== n > ‘ (4,1 )
o, -0
t:l i

where Y;= Y(t,)

and
n
Y=a/n3}y, .
i=1

Similarly, the variance oﬁ(t) is obtained from

2
o) = 1, (-0 (4.11)

where

Measurement parameter uncertainty growth for the linear drift model is depicted in Figure 6,2 of
Section 6. Other uncertainty growth mechanisms and associated models are described in
Appendix B.

A word of caution about uncertainty growth is due. If, for example, drift is a con-
cern, then the established value for the measurement uncertainty is only valid at
the ttme of calibration,

If drift can be characterized as discussed above, it maybe possible to correct for this or to change
the estimated uncertainty to include this based on engineering judgment, A more practical
method would be to incorporate a mechanism within the measurement system that allows drift to
be measured and compensated for.




4.10 Consideration of Decision Risk in the
Measurement System Design Process

Because of measurement uncertainties, incorrect decisions may result from information obtained
from measurements,

The probability of making an incorrect decision based on a measurement result is
called measurement decision risk, Since uncertainties grow with time since test or
calibration, measurement decision risk also increases with time since calibration.
This is the underlying motivation for doing recalibration or retests regularly.

Measurement decision risk may take several forms-the most common are false accept risk and
Jalse refect risk. A false accept is an event in which an unacceptable item or parameter is wrongly
perceived as acceptable during testing or calibration, Acceptance criteria are ordinarily specified
in terms of parameter tolerance limits. An acceptable parameter is one that is in-tolerance, An
unacceptable parameter is one that is out-of-tolerance, Therefore, false accept risk is usually de-
fined as the probability that an out-of-tolerance parameter will be accepted by testing or calibra-
tion. This definition is relevant from the viewpoint of the testing or calibrating organization. An al-
ternative definition is sometimes used which is relevant to the receiving organization. From this
viewpoint, false accept risk is the probability that an out-of-tolerance item or parameter will be
drawn at random from a given lot of accepted items or parameters,

False reject risk is similarly defined as the probability that an in-tolerance item or parameter will
be rejected by testing or calibration, False accept and false reject criteria can be used to establish
parameter tolerances, among other things. False accept and false reject risks are described math-
ematically in Appendix C.

4.10.1 False Accepts

Certain negative consequences may arise because of false accepts. Test process false accepts can

lead to reduced end item capacity or capability, mission loss or compromise, loss of life, damaged .
corporate reputation, warranty expenses, shipping and associated costs for returned items, loss

of future sales, punitive damages, legal fees. etc.

Calibration process false accepts lead to test system populations characterized by parameters be-
ing out-of-tolerance at the beginning of their usage periods, In Appendix B it is shown that the
higher the beginning-of-period (BOP) out-of-tolerance probability, the higher the average-over-pe-
riod (AOP) out-of-tolerance probability. High AOP out-of-tolerance probabilities lead to higher
measurement decision risks encountered during test system calibration. These higher risks, in
turn, make test systems more prone to measurement decision risk during end item testing.

4,10.2 False Rejects

Both test process false rejects and calibration process false rejects lead to unnecessary rework
and handling. Since higher rejection rates imply poorer production controls, test process false re-
Jects also create an excessively pessimistic view of the quality of the end item production process,
This view may lead to more frequent disassembly and repair of production tools, machinery,
molds and templates than is necessary.




Calibration process false rejects create an excessively pessimistic view of the end-of-period (EOP)
in-tolerance percentage of test systems. Since test system calibration intervals are adjusted
because of this percentage, calibration process false rejects lead to unnecessarily shortened test
system calibration intervals. This results in unnecessary operating expenses and increased
downtime costs.

1

ames meses SN O — e Suuh DS GBS TR OEE R TE mEm B O E B e




51 General

Common measurement references are critical to the world-wide exchange of goods, products, in-
formation, and technology. Transferring these common references in a controlled manner to’
thousands of individual measurements made every day is the goal of traceability. NASA mea-
surement traceability extends from the ground-based operations to measurements made aboard
space-based platforms and planetary probes, Decisions based on measurements will affect the
day-to-day well being of the crew, the performance of the on-board and ground-based systems
and the on-going scientific experiments.

Measurement traceability is a sequential process in which each measurement in a chain of mea-
surements, starting with accepted reference standards, depends on its predecessor shown in

Figure 5,1.
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FIGURE 6.1 — VERTICAL CHAIN EFFECTS ON UNCERTAINTY IN MEASUREMENTS.  The top of the
chain (Standards Laboratory) is assumed to be the accepted authority, Therefore, the resul-
tant data can pass through at least five layers, each with multiple sources of error.

The chain may only be one link or it may involve many links and several reference standards, For

example, temperature measurements using a thermocouple rely on the temperature scale and the
unit of voltage.

One of several definitions of traceability is:




TRACEABILITY — The property of a result of a measurement whereby it can be
related to appropriate standards, generally international or national standards,
through an unbroken chain of comparisons..

Traceability is a hierarchical process. There are other definitions of traceability and many of these
are discussed by Belanger, In the United States, it begins at NIST and ends with an operational
measurement, i.e., a rocket motor temperature, It is a measurement chain that is no better than
it's weakest link. At each link or stage of the traceability chain, errors are introduced that must
be quantified and their effects combined to yield a realistic estimate of the uncertainty with re-
spect to the accepted standards (usually NIST.) At each level, a standard will calibrate an un-
known, Both may be a single-valued or a standard artifact standard, or an instrument, The chain
may have only one link or it may involve many links and several reference standards,
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FiGurRe 5.2 — HIERARCHICAL NATURE OF TRACEABILITY. Solid lines represent the measure-
ment paths with each line r_eﬁresentln _one or more measurements of one or more quantities.
The dashed lines are established specifications based on previously made measurements,

Figure 5.2 iIs a simplified illustration of the hierarchical nature of traceability. It begins with na-
tional standards and ends when the measurement result will be used to make a decision, The
guality of the decision depends on the quality of the traceability paths. The box labeled
“Calibration Labs” represents many labs of varying capabilities and may be multilayered, They
may go directly to NIST or to another calibration laboratory, At each stage, there are error sources
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producing measurement uncertainties propagated to the next level, Also, the paths in most cases
are usually parallel, coming together when the product (measuring process) is placed in operation
(in a spacecraft or ground support equipment.) The result of this complicated process is a mea-
surement result used to make a decision. To get a single measurement, result may involve a stmi-
lar path for each measurement quantity involved in the final measurement. Consider the mea-
surement of temperature using a thermocouple. In the field, it involves (1) a calibrated thermo-
couple (2) a calibrated reference junction, and (3) a calibrated voltage measuring instrument.

Traceability is the melding together of measurement standards, measurement techniques, peri-
odic calibration, data analysis, statistical process control, and sound decision-maktng for each
Itnk of the measurement chain, This information, necessary to reconstruct the measurement,
must be documented and preserved to insure the integrity of the traceability. For each link, doc-
umentation should contain the assigned values of the final item, a stated uncertainty of the re-
sult, an uncertainty budget, the standards used in the calibration, and the specification of the
environmental conditions under which the measurements were made. The allowable degradation
in accuracy (increase in uncertainty) s often specified for each link in the chain as an accuracy
ratio.

51.1  Components of a Measurement

Every measurement Myps Of a quantity is an estimate of the magnitude ({N}). This estimate is a
pure number that represents the value of the measurand of the quantity expressed in terms of
the unit of measure () used to make the measurement, Furthermore, Mobs has an error (¢) that
is unique to that measurement. Mathematically it can be represented by the following rela-
tonship.

Mops={N}eb+¢ . (5. 1)

For differing units representing a quantity, different values for {N} will result. This can be seen by
considering the measurement of an invariant quantity using two different units, Since the quan-
tity Is invariant, the following relationship results:

{N},-64={N}g-6p (5.2

where the subscripts A and B represent measurements in terms of different units, If two slightly

different representattons of the same unit are used to make measurements, there will be small

differences in {N}. The difference is quantified by Eq.(5.3.)
8{N1 _&

IN] 6 (5.3)

The function of calibration is to reduce 84 to an acceptable magnitude, To achieve measurement
uniformity and assure traceability for a given gquantity
« There must be only a single unit of measure for each quantity

« The uncertainty of the unit with respect to its definition must be known

« The uncertainty of the measurement. process must be known,




5.1.2 Definition of Tolerance, Uncertainty and Accuracy Ratio,

Following are the definitions of tolerance, uncertainty, and accuracy ratio.

Tolerance — Tolerance is a condition imposed on a measurement by the designer or other agency.
Tolerance is defined as “the total permissible variation of a quantity from a designated value.”

Uncertainty — Uncertainty is “a parameter, associated with the result of a measurement, that
characterizes the dispersion of the values that could reasonably be attributed to the measurand” .
Measurement uncertainty is a property of the measuring system and all prior measurement chain
errors. Obviously, the measurement uncertainty must never exceed the tolerance.

Accuracy Ratio — Accuracy ratio (AR) or test accuracy ratio (TAR) are terms used to describe the
relationship between specified tolerances and measurement uncertainty, AR or TAR is the ratio of
the tolerance of the instruments being tested to the uncertainty of the standard.

tolerance

ACCURACY RATIO (AR) 1s: = —
uncertainty

The realization of accuracy ratios is sometimes impossible because of requirements for hardware,
materials, measuring processes, and the state-of-the-art, The calibration of an 8 1/2 digit digital
voltmeter (DVM) is an example of instrumentation approaching the quality of the standard. Most
calibration laboratories maintain the volt over an extended period to about +1 ppm but are called
on 1o calibrate DVMS having a performance in the 1 ppm region,

5.1.3 The Metric System

A coherent, universally accepted system of units of measure is critical to measurement uniformity
and traceability. Over the years, various systems of units have been adopted, but each has been
less than universal until the adoption of the International System of Units (S1) by the 1. Ith
General Conference on Weights and Measures (CGPM) in 1960, The S1 is frequently called, simply,
the metric system, It is proper to refer to the S1 as the modernized metric system, There have been
efforts to adopt the modernized metric system in the United States, particularly the Metric
Conversion Act of 1975. There has been little or no movement to metrication until recently. Now,
by law, United States Government activities must metricate in a reasonable time,

Section 5146 of Public Law 100-418, the Omnibus Trade and Competitiveness Act of 1988,
amends Public Law 94-168, the Metric Conversion Act of 1975. Specifically, Section 3 of the latter
act is amended to read as follows:

“Section 3. It is therefore the declared policy of the United States

-(1) to designate the metric system of measurement as the preferred system of weights and
measures for United States trade and commerce:

“(2) to require that each Federal agency, by the date certain and to the extent feasible by the
end of the fiscal year 1992, use the metric system of measurement in its procurement,
grants, and other business-related activities, except to the extent that such use is imprac-
tical or likely to cause significant inefficiencies or loss of markets to United States firms,
such as when foreign competitors are producing products in non-metric units:

“(3) to seek ways to increase understanding of the metric system of measurement through ed-
ucational Information and guidance and in Government publications: and
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“(4) to permit the continued use of traditional systems of weights and measures in nonbusi-
ness activities.”

The notice published in the Federal Register states:

“Under both this act and the Metric Conversion Act of 1975, the “metric system of mea-
surement” is defined as the International System of Units [S1] as established in 1960 by
the General Conference of Weights and Measures and interpreted or modified by the
Secretary of Commerce. (Sec. 4[4), Pub. L. 94-168: Sec. 403(1)(3), Pub. L 93-380.)"

Although universal, there are a few very small variations among nations regarding names, sym-
bols and other matters. An overview of the S1 is given in Appendix H. All material is the S1 as in-
terpreted for use in the United States. Also, the S1 is dynamic and is continually undergoing revi-
sion. Though the material in Appendix H is stable, it is important to verify it has not changed.

52 Measurement Standards

Units of measure must be realized experimentally besides, being conceptually defined. Such work
is scientifically demanding, needing years of research, and is usually restricted to national labora-
tories, universities and other scientific institutions. To serve their own needs, nations have est ab-
lished legal standards of measure and often, by law, have decreed that all measurements must be
traceable to their national standards, Because of errors in realizing the unit, small but significant
differences between as-maintained units may exist among nations.

The measurement standard is the primary tool for traceability, A measurement standard maybe
a physical object (artifact) adopted by national or international convention, physical phenomenon
or constant of nature (an intrinsic standard), a standard reference material (SRM), or in some sit-
uations a consensus physical standard. An example is the Rockwell Hardness Tester, which is
generally accepted to measure the hardness of steel, Their purpose is to provide a common refer-
ence point whereto a specific species of measurements is referred to insure measurement compat-
ibility with time and place,

Traditionally, standards have been thought of as devices specifically designed for that purpose, In
the context of NASA, the concept of standards must be extended to cover all instruments and ap-
paratus used to calibrate or verify proper operation of the operational equipment aboard a space-
based platform and on the ground. This includes all equipment traditionally thought of as “test”
equipment. When a DVM will calibrate or verify a panel meter, the DVM is the “standard, ” (A
standard is a reference device for a calibration process.)

5.2.1 Intrinsic Standards

An intrinsic standard is based on one or more physical phenomena of high reproducibility, or
constants of nature. Originally, these standards were primarily confined to national laboratories
but are finding their way to other metrology laboratories. Examples are: the triple point of water
and other temperature fixed points to define the temperature scale, the ac Josephson effect to de-
fine the representation of the S1 volt, and cesium beam clocks for time and frequency. Intrinsic
standards can be realized anywhere (if an appropriate level of competence exists and the system
embodying the intrinsic standard can be well-characterized) eliminating the need for calibration at a
higher echelon such as NIST. (A Josephson volt can be readily realized in a Dewar at cryogenic
temperatures, However, the process of using it to measure a source at room temperature is
fraught with difficulties. The process maybe idiot-proof at 5 ppm, but to achieve 0,05 ppm re-




quires expertise and good procedures.) For international consistency, the phenomenon is fully
described and the values of the constants are assigned by international agreement, The procedure
by which measurements are made with intrinsic standards must be fully documented and agreed
upon to prevent procedural variations.

5.2*2 Artifact Standards

An artifact standard uses one or more physical properties to represent the desired unit or quan-
tity. For example, the thermal expansion of mercury is used to measure temperature changes.
Artifact standards are the most common and all must be calibrated periodically in terms of a
higher order (echelon) standard, Examples of artifact standards are quartz oscillators, standard
resistors, gauge blocks, etc.

5.2.3 Ratio Standards

Ratlo standards are dimensionless standards used to scale various quantities and can, in princi-
ple, be derived locally. For example, the calibration of a precision voltage divider can be done
without reference to an external standard, Sometimes, calibration services are available for cer-
tain types of ratio apparatus. Ratio measurements are a vital tool for scaling units,

5.2.4 Reference Materials

In certain situations, the accepted reference standard is a reference material (RM), certified refer-
ence material (C RM) as defined by the International Standards Organization (I SO) Guide 30-
198 1(E), or a material that has been carefully characterized by NIST and sold as a SRM. Through
its use, traceability to the accepted national standards is achieved, For example, mixtures of
gases of known composition are used to calibrate systems designed to measure the composition of
an unknown gas mixture. When properly used, these materials usually calibrate the entire mea-
surement system and provide traceability.

5.2.5 Other Standards

There are circumstances where there are no national standards. For example, NIST does not
maintain a standard for hardness testing, To insure uniformity, one or more agreed upon stan-
dards have evolved and become recognized, Where more than one standard exists they may not
glve the same measurement results. To avoid ambiguity, the particular standard used must be
clearly specified. They may or might not be recognized internationally or even nationally.

53 United States Standards

In the United States, NIST, formerly the National Bureau of Standards (NBS), has, by law, the re-
sponsibility to establish, maintain, and disseminate the physical units for the nation, To meet
this responsibility NIST provides a wide range of calibration services, develops and distributes
SRMs, operates a standard reference data program, and provides measurement expertise for a
wide range of disciplines. Besides Its role of disseminating standards, NIST is very active in devel-
oping new measurement techniques where, none exist or major improvements are needed.
Measurement service activities at NIST are coordinated by




The Office of Measurement Services
National Institute of Standards and Technology
Gaithersburg MD 20899

531 Physical Measurement Services Program

The physical measurement services of NIST are designed to help those engaged in precision mea-
surements achieve the highest possible levels of measurement quality. There are hundreds of
services available and each class is described in NIST SP250. The general areas are dimensional
measurements, mechanical measurements, thermodynamic quantities, optical radiation mea-
surements, ionizing radiation measurements, electromagnetic measurements, and time and fre-
guency measurements. They are the highest order of calibration service available in the U.S. by
providing a direct Itnk between clients and the national measurement standards. NIST will only
calibrate standards or specific instrumentation that meets certain high performance standards.
For general information about services contact

Calibration Program
National Institute of Standards and Technology
Gaithersburg MD 20899

NIST urges direct contact with the staff member responsible for the particular calibration area for
specific questions or problems,

5.3.2 NIST SRM Program

NIST has an extensive reference material program covering a wide range of materials sold
throughout the world, These materials are primarily SRMS certified for their chemical composi-
tion, chemical property, or physical properly, but include other reference materials, They serve
three main purposes:

(1) To help develop accurate methods of analysis;
(2) to calibrate measurement systems: and

(3) to assure the long-term adequacy and integrity of measurement quality assurance poli-
cies,

It is probable SRMS will find use In certatn life support systems aboard future manned space-
based platforms. ‘IWO examples are the use of one or more SRMS to monitor the composition of a
habitation atmosphere: the other to monitor composition of recycled water,

NIST publishes the SRM Catalog (SP260) of available materials every two years. The current cata-
log lists over 1000 materials, For further information contact

Standard Reference Materials Program
National Institute of Standards and Technology
Gaithersburg MD 20899

As part of the SRM program, many special publications are available from NIST. One particularly
is applicable to traceability (Handbook for SRM Users, NIST SP260- 100, 1985.)




5.3.3 National Standard Reference Data Program (NSRDP).

NSRDP is a nationwide program established to compile and critically evaluate quantitative physi-
cal science data and assure its availability to the technical community, For information contact,

Standard Reference Data Program
National Institute of Standards and Technology
Gaithersburg MD 20899

5.4 International Compatibility

Representatives of most nattons have established systems of legal units based on the S1 units
that may result in small differences in certain national as-maintained units. Although the differ-
ences are small, such differences may be important to NASA’'s space program, particularly in the
exchange of technology between the participating nations. The differences range from negligible
for most quantities, to significant for others. Significant differences generally occur for derived
guantities and evolving measurement areas such as millimeterwave standards. Within the last
few years, the U.S. and other nations are seeking to cause better international agreement among
national standards using a wide range of tools to insure compatibility.

54.1 Reciprocal Recognition of National Standards

NIST has established a program to recognize the equivalency of standards between NISI' and the
national standards organizations of selected other countries. For each quantity, through experi-
ments or careful evaluation of a participating natton’s capability, participants establish the equiv-
alency for their national standards. These equivalency accords are non-binding but do provide ev-
idence that the national standards are equivalent, (They do not assure equivalency at lower levels
however,) In the United States, the Department of Defense (DoD) accepts the accords on equiva-
lency while the Nuclear Regulatory Commission does not, Several agreements exist and more are
being negotiated between NIST and the national laboratories of Japan, Canada, Italy, Germany,
and other countries. The NIST Calibration Program is cataloging such agreements and should be
consulted for details,

5.4.2  BIPM Calibrations

The BIPM was established under the Treaty of the Meter as the international metrology labora-
tory. One of its missions is to provide calibration services to signatories of the treaty. Many na-
tions with small central metrology laboratories use BIPM. Although these nations use BIPM, the
accuracy and precision of their measurement systems place limits on the level of agreement to be
found between the standards of such nations, and those of major industrial nattons.

5.4.3 International Comparisons

Bilateral and multilateral international comparisons of national standards directly measure dif-
ferences between the participating laboratories. The BIPM is taking a very active role in organizing
and managing such comparisons. International comparisons are usually important to reciprocal
agreements, Many nations, including the U. S. do many comparisons with no regard to reciprocal
agreements.




5.4.4 NIST Calibrations

NISI" provides direct calibration services to some nations to insure measurement compatibility.
Calibration at BIPM does not necessarily provide NIST traceability. Calibration at NIST provides

traceability to the U.S. units, but does not guarantee the results of each measurement made in
the customer’s laboratory.

5.5  Calibration Transfer Techniques

The heart of traceability is the ability to transfer units, derived quantities and other agreed-on
reference standards, with a least degradation in the accuracy. Calibrations fall into two broad
classes:

(1) Devices such as calibrated standards and specific values determined in terms of national
standards and

(2) Instruments or standards measured to determine if they are within assigned specified
limits of error relative to national standards,

The difference is in the way the results are reported, In the first case, a specific value is reported
and in the second, it is reported as either in or out of tolerance (specification,) The minimum in-
formation that must be supplied is illustrated by the content of a typical NIST report. Note that a
NIST report of test generally has nothing to do with calibrations, A NIST Report of Calibration
gives (1) the value of the item calibrated (2) the uncertainty of the calibration for the accepted ref-
erence standard and details about the overall uncertainty (3) the conditions under which the
measurements were carried out, and (4) any special information regarding the calibration, It does
not include uncertainties for effects of transport to and from the calibrating laboratory, drifts with
time, effects of environmental conditions (i.e., temperature, humidity, barometric pressure, etc.)
Sometimes, these errors may be greater than the reported uncertainty of the calibration,
Generally, calibration transfer techniques are one of the following types,

5.5.1 Traditional Calibration

Tradltionally, instruments and standards are transported to and from the calibration laboratory,
by hand or common carrier, This method ts the simplest and most straight forward, but it syffers
from the weakness that the calibration ts guaranteed valid only at the ttme and place it was carried
out. It is the user’s responsibility to assess other factors that can introduce errors into the trace-
ability chain, Despite the possible shortcomings, it is the easiest and still the most widely used
‘calibration transfer technique, Some guidelines to aid in getting the best possible calibration at
the local level are listed below.

(1) Pay close attention to the total transportation process, including packing, mode of trans-
port, ttme in transit, and the carrier. Manufacturers and the calibration laboratories can
frequently help to minimize transport effects.

(2) Always calibrate standards to be sent to the calibrating laboratory with the remaining (at
home) standards before and after transport. A significant change shows potential prob-
lems: a small or no change shows that the transport process has not affected the item,

(3) Understand the effect of environment on the item and evaluate any effects if the local en-
vironment differs significantly from the one in which the item was calibrated, The envi-
ronment is that of the physical location of the item, and not the room, A digital voltmeter




may be housed in a confined space and be at a temperature significantly different from
the general environment. A thorough understanding of the equipment and standards is
critical to minimizing environmentally induced errors.

(4) Artifact-based instruments and standards are not absolutely stable with time and there-
fore, must be recalibrated periodically by strategies discussed in Section 6.

5.5.2 Measurement Assurance Program (MAP) Transfers

The concept of the MAP was developed by NIST about 20 years ago. In its simplest form, a MAP is
a calibration technique in which the calibrating laboratory calibrates its client's measurement
process instead of the client’s standard,

It is to metrology what quality control or assurance is to manufacturing. Sound measurement as-
surance programs at all levels in the calibration chain are essential to traceability. A MAP does
two things

(1) Ties a single measurement to a reference base, and
(2) Establishes the uncertainty of a measured value relative to this reference base,

Well-designed and implemented MAPs are critical to insuring a long-term high level of perfor-
mance of on-board and ground-based systems of space applications,

Most MAPs are carried out at the calibration laboratory level, but could be adapted
for use throughout the total system, including critical day-to-day operational mea-
surements.

Much has been written about MAPs but the reader should become familiar with two publications,
one by Belanger and the other by Croarkin, The first is an overview of MAP programs for calibra-
tion laboratories and the second is an excellent tutorial on MAP methodology. Much of the mate-
rial in both is applicable to MAPs at all levels,

All MAPs have two distinct parts:

(1) Transfer of the unit or quantity to a given laboratory or system, This is the calibration
process and it sets the lowest limit of the uncertainty for the process,

(2) The day-to-day measurement process used to monitor the local process including stan-
dards and instruments between external vibrations. It is Important to note that when an
artifact is externally calibrated, the user assumes its value is constant (or predictable)
unless there is evidence to the contrary. Therefore, the internal actions taken between cal-
ibrations to monitor the local process and provide evidence, are as important as the cali-
bration itself.

The first, the calibration model, describes the relationship among reference standards,
unknowns, instrumentation, and operating environment, For each calibration process, there is a
unigque model, The second is the statistical model that is used for error estimation and uncer-
tainty determination. When used in conjunction with the calibration model, various error sources
can be identified and quantified, Operationally, MAPs rely on the use of a check standard to
monitor the process continuously. By repeated measurements on the same object (check stan-
dard), process errors are quantified, The statistical analysis of the data leads to the estimate of
the measurement process bias uncertainty. Croarkin discusses several possible check standards.
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In a MAP, the entire system used to perform a calibration, and to provide traceability from the
standards of the supporting standards laboratory, is viewed as a process. The system includes
standards, instruments, environment, procedures, personnel, and activities such as moving
standards and evaluating errors The supporting standards laboratory and Its components are
also taken into account. Two techniques are used to evaluate the process: a “blind” test of the
process output, and statistical process control techniques. The former is used on a periodic basis
(perhaps yearly) while the latter is used continuously to ensure the integrity on a day-to-day
basis.

The “blind” test is typically carried out using a well-characterized transport standard or precision
instrument (artifact) whose calibrated values are unknown to the process output, The artifact is
selected such that its parameters and their proven performance levels are adequate to sample the
type of measurement critical to the objectives or purpose of the measurement process. The arti-
fact is treated as a normal workload item by the process output, except it maybe measured re-
peatedly, or used in a special pattern of measurements designed to determine the process preci-
sion, as well as improving the accuracy of measurement of the process offset(s.) The artifact is
characterized before and after this sampling process by the supporting laboratory, All data from
both laboratories are used to determine the errors (offsets) of the process output and their char-
acteristic statistical properties. This approach may be and has been used (1) as a quality control
check on a measurement process (2) a tool to identify and correct measurement problems, and (3)
to achieve traceability where very low uncertainties or very high confidence levels are required of
the process.

This technique, when used alone, suffers from the same weakness that periodic instrument cali-
bration has: i.e., it cannot determine exactly when, between samples, a measurement process has
gone out of control (when the measurement errors exceed the process requirement,) However,
when it is complemented with the application of statistical process control techniques, a full mea-
surement (quality) assurance policy results and nearly eliminates any likelihood that a poor
product (bad measurements) can get out.

Typically, the way this is carried out it is through the use of a “check” standard, This is an in-
strument or device, similar to and, If possible, of higher quality than, the items being measured
by the process, The measurements made on the check standard may not need to be as complete
as those made on the process output, but the same measurements must be made repeatedly. The
frequency is determined by the stability of the system, the statistical characteristics of the data,
and the process requirements on a statistical basis. This should all be accompanied by thorough
documentation,

NISI' offers a number of MAP services (see NIST SP250) that serve as “blind” sampling for calibra-
tion processes. NIST requires that participants in NIST MAPs demonstrate that their measuring
process is in a state of statistical control between transfers,

5.5.3 Regional Measurement Assurance Program (RMAP) Transfers

RMAPs or group MAPs are an outgrowth of the NIST MAP program. Instead of one laboratory in-
teracting unilaterally with NIST, several establish a program in which one or more transport
standards are circulated among participants to measure between laboratory differences, During
the interchange period, NIST will provide a MAP service with one of the participants. From this set
of measurements, the measurement processes of all laboratories are evaluated and traceability
achieved. For a well-planned RMAP, the extra step adds a very small Increment to the overall un-
certainty. RMAPs can be used to insure close agreement among any group of facilities.




5*5.4 Round Robins

Round robins are not so much a calibration tool as they are an audit tool to identify systematic
differences and estimate measurement capability among the participants. Well-devised round
robins provide realistic traceability by directly assessing capability of a number of laboratories.
Most round robins are based on a technique developed by Youden. One laboratory may serve as
the pivot by circulating well-characterized artifacts among the participants and analyzing the re-
sults. (Usually two artifacts are used but, it can be done with one. The analysis is more difficult
and not as much information is obtained.) Each artifact is measured by each participant and all
results are then analyzed. It is unnecessary that the two artifacts be identical but they must
evaluate the same measuring process. The round robin done by the Kennedy Space Center for
voltage, at the 10 V level illustrates the idea.

EXAMPLE—10 V ROUND ROBIN

Two 10 volt solid-state references were circulated among the participating laboratories. They were
measured by each participant with their as-maintained unit of voltage and their measuring pro-
cesses. For each participant, the measured value of one standard was plotted as a function of the
other as shown in Figure 5.3. Interpretation is straight forward, If the points had been distributed
in the four quadrants in a random or a shotgun-like pattern, the experimental errors would have
been random and much greater than the systematic errors. Here, the points are along a straight
line showing there are systematic differences between laboratories. Furthermore, because of the
closeness of each point to the line, the bias uncertainty for each set of measurements is small.
From these data, one concludes there are systematic biases in the measuring processes among
the participants. NIST disseminates the unit at the 10 V level to better than 1x10-6. It is possible
to maintain the local unit to an uncertainty of about 1x10-6 using MAP techniques (circle in the
center.) If one laboratory were known to be correct, then the offset of the others could easily be
estimated, Here, the pivot laboratory was known to be in very close agreement with NIST and the
three points at 0,0 are for that laboratory since it served as the reference,
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FIGURE 5.3 — A Youpen PLoTFOR A 10 V ROUND RosiN. A total of 11 laboratories Parti_cipated
with one serving as the pivot, or control. The points are the difference between the pivot labo-
ratory (3 points near_OI) and the participating laboratory. The circle has a radius of 1x10-6 that
indicates the potential capability of the laboratorieS. Note that only three laboratories fall
within the circle (Pivot lab excluded.)

The degree of closeness to the line is an indicator of individual internal precision, while scatter
along the line indicates systematic effects between a laboratory.
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5.5.5 Intrinsic Standards

An intrinsic standard is a calibration transfer standard because it reproduces a unit locally with-
out recourse to NIST. It is, however, important that the methodology used in the use of such a
standard be fully evaluated and verified by comparison with NIST or similar laboratory, For ex-
ample, though the temperature scale can be realized by fixed points and a platinum resistance
thermometer, the methodology should be independently verified.

5.5.6 Statistical Measurement Process Control

If calibrations are done on a diverse workload base whose measurable attributes derive their val-
ues from independently traceable sources, then transfer ef accuracy can take place from the
workload to the calibrator. This “consensus traceability” is possible with statistical process con-
trol methods described in Section 6 and Appendix D. Moreover, if the measured quantities in-
clude known terrestrial or astronomical references, the SMPC methods enable a transference of
accuracy from these references to orbital or space-based platforms.

56  Calibration Methods and Techniques

The methodology for making measurements is crucial to traceability and the decision making
process. It calls for the integrated understanding and application of the following major elements:

« The physical laws and concepts underlying the total measuring process
« Reference standards
* Instrumentation

« Control and understanding of environmental effects [including operators or technicians)
on the measurement process

« Data reduction and analysis
«  Error estimation and analysis,

Calibration techniques vary depending on the category of equipment being calibrated, All mea-
surements are the comparison of an unknown to a known and calibrations are no exception,
Categories are:

« Reference standards
« Test and measurement equipment (TME)

. Systems,

5.6.1 Calibration of Reference Standards

Most reference standards are fixed. They are usually an artifact that is the representation of a
unit at a single point. Examples are; gauge blocks, standard lamps, and standard resistors,
Although chiefly used at the highest accuracy levels, they are among the easiest to calibrate,
Often for a specific quantity, there are several standards covering a wide range of values,
Standards are usually calibrated by comparing them to one or more known standards of the same
approximate magnitude. Comparisons or calibrations are made by either measuring differences
(A) between the standard(s) and the unknowns (X)

A= X-S (5.4)




or ratios (K)

K= (5.5)

o

In either case, the value of the standard must be Independently determined, or known, to calcu-
late X. Since the two objects differ only slightly, the instrumentation need only cover the range of
the maximum expected difference (ratio,) For example, a 10 V solid-state voltage standard Is cali-
brated by measuring the difference to 1 uV (O. 1 ppm) between the standard and unknown using a
DVM. If the largest measured difference is 100 ppm, then the range of the DVM need only be
+1000 uv and the resolution only *1 uV. The accuracy required of the DVM is only 1 part in 1000
or 0.1 percent, well within the capability of today’s high-accuracy DVMS.

The product of most standards calibrations is a correction figure or a value, Standards are rarely
adjusted to be within fixed bounds. Generally, corrections are made to the nominal value of the
standard for its calibrated value, temperature, pressure, and perhaps other influence factors, to
obtain a value to be used with the standard to perform calibrations,

5.6.2 Calibration of Test and Measurement Equipment (TME)

TME is the link between the world of calibration and the end-user and is the major workload of
the calibration laboratory. TME can be as simple as a hand-held meter or as complex as an au-
tomated test stand that measures many parameters, Although many calibration techniques used
are similar to those used for standards calibration, there are significant differences.

« TME is generally calibrated to a specified accuracy, usually the manufacturer’s specified
accuracy over its operating range or ranges, For many newer microprocessor based in-
struments, it is possible to store corrections to be applied to individual readings automat-
ically. More and more instruments take advantage of software corrections to enhance in-
strument performance.

« The instrument is calibrated on each range at a sufficient number of points (including
zero) to determine the required performance parameters.

o Corrections are seldom supplied unless requested by the user.

« Minor adjustments may be made to bring indicated reading of the instrument into better
agreement with the correct or “true” value. Major out-of-tolerance conditions usually need
repair by a competent repair facility.

+ Good practice requires that the calibrating facility maintain a record and report to the
customer the as-found and as-left conditions of instruments.

5.6.3 Calibration of Systems

Equipment used to make operational measurements is the reference standard for that measure-
ment process. The measurements are used to make decisions based on the indication of the in-
strument (not the “true” value.) For TME, they are calibrated to the manufacturer’'s specifications.
Broadly speaking, a single piece of measuring equipment might consist of a sensor and a data ac-
quisition system as illustrated in Figure 5.4.
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FiGUrRE 5.4 — INDIRECT MEASUREMENT OF PHYSICAL VARIABLE.

The sensor senses the quantity to be measured (measurand) and converts it to a substitute pa-
rameter (very ofLen electrical,) The substitute parameter is then transmitted to the data acquisi-
tion system where it is quantified and related to the original parameter being measured, Also,
there are several sub-elements such as signal conditioners, transmission lines, connectors, etc.
There is no single strategy to calibrate such a system. Two, neither of which is well suited to every
case, are:

(1) Calibration of each operating entity individually: a process that may mean partial disas-
sembly of the system. This method may overlook certain sources of error that might ad-
versely affect the overall system calibration (for example, Interaction between subsystems,)

(2) Calibration as a system using suitable standards. While in some ways this is the simplest
approach, it does not necessarily identify the source of any out-of-tolerance subsystems,
For cases where the measurand is a physical quantity that has no reasonable substitute
measurand (a flowing gas at a known temperature is an example), system calibration is
not practical,.

To further compound the problem, there are complex test systems and measurement systems
designed to measure many parameters and often provide control based on the results of some
function thereof, There is a real possibility there will be interactions among the various elements
in the system, To calibrate such a system totally, maybe nearly impossible because of the inter-
actions. For example, some high accuracy digital voltmeters measuring a DC voltage may be af-
fected by ac signals coupled to the dc path where ac signals are a part of the total measuring sys-
tem. The size of the resulting error depends on the instrument, the magnitude of the coupled ac
current and its frequency. (Usually, the effect on the measured dc voltage is proportional to the
square of the ac current,) A non-exhaustive list of the major categories of error sources includes:

« Measurand-sensor interface errors

« Sensor conversion errors

« Signal conditioning errors

« Transmission from sensor to DAS errors

o DAS errors

« Algorithm errors (both sensor and DAS)

« Software errors

«  Operator and operational/procedural errors.

The most effective action to insure the long-term calibration of any system is to address the cali-
bration and maintenance problems early in the design phase, One approach to this problem is to




integrate reference standards and associated calibration means into the system with sound cali-
bration techniques, Such a system only requires that the internal standards be routinely cali-
brated.

5.6.4  Calibration Using SRMS

Reference materials are used to calibrate complete measuring systems that are used to measure
the concentration of particular substances in a mixture-particularly in the fields of chemistry
and medicine. These materials are applied to the input of the measuring system and the output
observed. The result is the direct measurement of any instrumental offset that can be used as a
correction to routine measurements of the quantity of interest. It is a direct calibration method
and may have only a limited range thereby requiring reference materials containing various
amounts of the substance of interest, For example, pH standards (Sums) are used to calibrate or
verify a pH meter.

5.6.5 Scaling

Real-world measurements of a quantity must be made over many decades, and all must be trace-
able to national standards. National laboratories, including NIST, cannot provide calibration ser-
vices for all possible multiples and sub-multiples, However, suitable standards and methodology
for realizing sub-multiples and multiples of most units can be readily available at the local level,
The two principal methods for scaling are the additive and ratio techniques,

5.6.5.1 Additive Scaling

As the name implies, additive scaling is the process of calibrating multiples or sub-multiples of
the reference standard using only the mathematical operations of addition and subtraction,
Additive scaling requires that the sum of the parts must equal to the whole, Not all standards are
truly additive, For example, two 10.00000 S2 resistance standards connected in series are not
equal to 20.00000 Q because of lead and contact resistances, Mass calibrations, on the other
hand, are an example of an additive scaling process, Starting with the kilogram, larger and
smaller mass standards are calibrated by comparing multiple mass standards (weights) with sin-
gle standards of equivalent mass using sound experimental designs and a suitable 1:1 compara-
tor (a balance,) Another important example of using additivity is the dead weight gauge to cali-
brate pressure transducers. Different pressures are developed in the system by changing the
weights.

5.6.5.2 Ratio Scaling

Multiplication and division are used to scale by ratio, The precise mechanism used depends on
the particular measurement discipline. Ratiois a dimensionless quantity that can be indepen-
dently established to a high degree of accuracy-it finds wide use in many disciplines, particularly
in electrical measurements. Resistance measurements are made using a bridge as the ratio scal-
ing device. To avoid the effect of lead resistance, resistors are scaled with precisely known resis-
tance ratios in such a way that no current flows by defining leads and contacts, The resistance
ratios are embodied in special circuits that maybe calibrated using additive techniques,




5.6.5.3 Scaling Using Defined Fixed Points

The temperature scale is defined with (1) certain intrinsic standards known as defined fixed
points (2) interpolating devices (transducers), and (3) the defined mathematical relationship relat-
ing the property measured to the thermodynamic temperature. Several interpolating devices are
needed to cover the complete range of temperatures but for space applications, the platinum re-
sistance thermometer (PRT) is the most important, By measuring the resistance at selected fixed
points and using the defined mathematical relationship between resistance and thermodynamic
temperature, the temperature scale from about -259 to 960 “C is realized. The PRT can then be
used to measure temperature or calibrate other temperature transducers by direct comparison,

5.7 Calibration Traceability and Error Propagation

Measurement errors happen at every link in a chain of measurements, from the realization of a
measurement unit, to the final measurement result, Also, standards and instruments are subject
to errors arising from transportation, drift with time, use and abuse, subtle component changes,
environmental effects, and other sources. At each link, the errors must be estimated, combined,
and unambiguously communicated to the next link (level,) The parameter used to disseminate
information about measurement errors is the measurement uncertainty. This section will address
the issue of errors, their estimation, combination, and propagation in the TME calibration chain,
More discussion from the instrument designer’s perspective is given in Section 4. The affect of
uncertainty on calibration interval is discussed in Section 6, The quality of the measurement un-
certainty estimate plays major roles in both traceability and calibration intervals.

5.7.1 Evaluation of the Process Uncertainty

At each calibration level, the steps necessary for the reliable evaluation of the process uncertainty
are discussed below. A stable measurement process is a prerequisite to estimating the measure-
ment uncertainty.

STEP 1.  All sources of error must be identified and classified according to type
(bias or precision,)

Identification is done by attentive and thorough analysis of the physical principles and concepts

underlying the particular measurement, augmented by auxiliary experiments and data. In addi-

tion to the basic methodology, one must consider secondary effects that can affect the measure-
ment, For example, low level voltage measurements are sensitive to thermally generated emfs
caused by temperature differences within the measuring circuit,

STEP 2. Individual or groups of errors must be quantified,




Bias and precision errors are estimated differently but must be expressed so that, they can be
combined to convey the total uncertainty in a meaningful way, and its composition to the user,
The errors must be stated at the same confidence levels.”

Bias (systematic) uncertainties cannot be directly estimated. Instead, they are estimated using
sound engineering judgment and ancillary experiments, The bounds of each bias error is esti-
mated through an understanding of the physical laws and concepts underlying the measurement
and an analysis of the actual process. They are usually combined using Eq. (4,4), which is based
upon the underlying assumptions expressed in Section 4.4.3 to get the total bias uncertainty (Bp)
Estimating each error is a judgment call, A conservative practice is to esttmate bias error as the
“maximum” possible bias. The problem is that “maximum” is subjective, What does “maximum”
mean? Present day thinking is that bias uncertainties are expressed at either the 99.994% (40) or
99.73°A (3a) confidence level, That is, the chance that the esttmated bias uncertainty will exceed
that stated is 6 in 100,000 for the first, and 270 in 100,000 for the latter. The confidence level
may be arbitrarily chosen but in any error analysis the chosen level must be stated.

(Precision) random uncertainties are estimated by replication of measurements and ancillary ex-
periments. They can be estimated individually and combined through Eq. (4,5), or by the applica-
tion of SMPC to yield an overall estimate of Or. The SMPC method is preferred for several reasons:

(1) It directly estimates a, from operational data from the measuring process.

(2) Because it is operational and ongoing, ¢, provides continuous information about the pro-
cess,

(3) It can provide information on the day-to-day and long-term performance of the process
(detect process changes,)

(4) Day-to-day process variations that would otherwise be systematic are randomized,

STEP 3.  Bias and precision uncertainties are combined to estimate the process
sigma (o;.) Calculate the total uncertainty using a suitable multiplier.

U = Ko;

There are several methods that can be used to combine precision and bias errors, one of which is
given in Eq. (4.6a), that is

U= i(BT + laST)

which is a special case of the equation given in “Step 3" above, Here, the multiplier K is t,, the
Student T statistic at the confidence interval a. Eq. (4,6a) also assumes the bias errors are esti-
mated at the same probability level, For a well-characterized measurement process with a large
data base, the statistic simply becomes that gotten from the normal distribution, This is usually
the case for most calibration processes, Typical multipliers in metrology are 2 and 3, which corre-
spond to a equal to the 95.45?40 and 99.73°A confidence levels for a large number of degrees of
freedom, Within the metrology community, both nationally and internationally, there are efforts
proceeding to develop methods for expressing uncertainty,

! To be consistent with Section 4, swill be used throu?hout. All references to ecan be replaced with s for small
or medium-sized data sets. Since thts section dea
extensive data at each link, ¢1s more applicable.

S primarily With the calibration chain which usually haa




STEP 4. The measurement process and uncertainty estimates must be docu ,
mented and unambiguously communicated to the user.

At the least, the documentation must include:
(1) A statement of the combined uncertainty of the measurement.
(2) The confidence level to which the uncertainty is estimated.

(3) The interval over which the uncertainty and confidence level apply.

5.7.2 Propagation of Uncertainty in the Calibration Chain

Errors made at higher levels are propagated to the next level, Since the true error cannot be mea-

sured directly, the uncertainty is the tool by which error estimates are transferred down the
chain.

‘ All uncertainties propagated from a higher level are taken as bias at the current
level.

This s true for both precision and bias errors. Therefore, it is essential that the estimate of the
uncertainty be a valid reflection of the measurement process, *

Note that this is not true in the BIPM recommendations, A different approach is recommended by
the Comité International des Poids et Measures (Recommendation 1 [CI- 1981], Metrologia 18
[1982], page 44.) The expression of the uncertainty of measurement in calibrations does not con-
tain bias (systematic) errors, Uncertainty values are calculated after corrections have been made
for all known bias errors. Thus, calibration certificates which are in accordance with BIPM proce-
dures state only precision (random) uncertainty values.

58  Adjustment Strategies

Calibration assumes the object being calibrated, and hence, the quantity that it represents,
changes. A well-designed process will choose the calibration interval and methodology so that,
changes will have only a negligible effect on operational measurements. When an adjustment is
needed, three possible actions, depending on the object, can be taken, First, a known correction
can be applied to the results of all observations. Second, the object can be physically adjusted to
bring its values to within certain specified limits. Lastly, many microprocessor-based instruments
can store sofiware corrections in non-volatile memory and automatically apply them to each mea-
surement.

5.8.1 Reference Standards

Reference standards are usually fixed. The calibration process yields the current value that is
used with corrections for influence factors to calibrate other items, Predictions of the sign and
magnitude of the drift with time should be obtained based on the calibration history of the refer-
ence standard and used to predict the present value. Adjustments are rarely made to reference
standards, thus the adjustment strategy is: do not adjust, but monitor drift,




5.8.2 Direct Reading Apparatus

TME and most other instruments are designed for direct reading. That is, the indicated value is
assumed to be correct to within a specified tolerance. When a calibration shows it to be out of tol-
erance. act-ton must. be taken,

(1) The instrument or system can be adjusted to bring it into specification either locally or by
a qualified service center. When adjusting an instrument to bring it into specifications, it
is important to make certain that the adjustment is within the operating adjustment band
specified for the instrument.

(2) Many instruments can store corrections in non-volatile memory. In use, the instrument
logic handles proper application of the correction to display the correct value. Procedures
for using such features must be unambiguous. Several measurements should be taken
after calibration to ensure that corrections were properly installed,

(3) For systems having computing capability, the corrections can be applied during the data
processing phase.

(4) The calibrating laboratory must notify the user when a calibration shows it to be out of
tolerance as found.

Adjustments can be harmful if a software correction is too large, In such a case, the instrument
may be out of its design envelope, All software-applied corrections must include limits to insure
that the correction is within design limits,

Three strategies for adjustment of indicated reading to the center of the tolerance band are cur-
rently being used in calibration laboratories. They are:

(1) Adjust at each calibration to the center of the tolerance band,

(2) Adjust to the center of the tolerance band only when the indicated reading exceeds a
specified % of the tolerance limit, such as 70% of tolerance limit,

(3) Adjust to the center of the tolerance band only when the indicated reading exceeds the
tolerance limit.

* The policy for adjusting TME during the calibration process and the adjustment
action taken must be documented and available for analysis of calibration
interval,

5.9 Software Issues

No other technological artifact is changed as ofien as software, When some new functionality is
needed, we perceive that sofiware can easily be changed to fit this need, but anyone who has writ-
ten and debugged software realizes that interactions can be extremely complex,

Software-influenced elements of the measurement chain act as black boxes, greatly simplifying
design and use, and misuse of measurement systems, With some effort, one can ascertain mea-
surement quality through analyses of the standards used, techniques used, data results, and de-
ciston-making processes used, for each link of the measurement chain, Often, we neglect the
application of these analyses to the software “black box,” The software-driven computational and




control power present in contemporary data acquisition systems implicitly claims achievement of
superior accuracy when it might be only apparent precision, There is a tendency to be lulled by
this tempting and superficial simplification of the measurement process. An understanding of the
software is a vital element of the measurement traceability process.

Metrology software guidelines are primarily formulated to improve the reliability of metrology op-
erations and secondarily to reduce the cost of maintaining metrology systems. As helpful as these
guidelines are, managers, engineers, and technicians involved with metrology operations should
be persuaded to use them, Acceptance is an evolutionary process achieved by education at all
levels. Therefore, the first set of guidelines should be minimal with plans to continue to more ex-
tensive guidelines over time.

59.1 Software Documentation
The minimal set of documentation for metrology software has the following sections:

« Software Requirements — Description of what the sofiware is supposed to do.

«  Software Architecture Design — Gives a high level picture of how the system is put to-
gether and serves as a “road map” for the source code.

+ Software Version Description — Contains commented source code and is the real detailed
description of how the software works.

+  Software Test/rig — Provides a set of test cases and procedures to prove that the system
satisfies the requirements and continues to satisfy the requirements when changes are
made.

«  Software User's Guide — Tells the new or unskilled user how to run the system and de-
scribes error indications and recovery procedures,

For a small system, these sections will easily fit into a single binder although the sections maybe
considered separate documents to simplify revision,
5.9.2 Software Configuration Management

Configuration management is a critical but often neglected function in small installations and
projects,

When a change is made to metrology-related software and the new version exe-
cutes the set of controlled test cases tn an acceptable manner, and is formally ap-
proved, a version package should be placed in a secure controlled environment
and obsolete versions removed from service. Secure copies of the obsolete version
should be retained until they are of no known value. This is essential to maintain
measurement traceability.

The version package should include as a minimum: source code, object code, and test results. If
requirements have been changed, or the user interface has changed, revisions to the require-
ments document and user’'s manual should be included.

A reliability performance goal can be set to determine when changes should be allowed and how
large a change should be permitted, For instance, a freeze on all changes not related to debugging
can be imposed when the failure intensity rises above the performance goal.




5.9.3 Software Standards

The development and maintenance of metrology software are a special case of software develop-
ment and maintenance. Therefore, standards for metrology software should be selected and tai-
lored from the general NASA software standards to take advantage of the expertise and effort that
have gone into those standards. In particular, the Data Item Descriptions (DIDs) supporting NASA
“Information System Life-Cycle and Documentation Standards” should be tailored to provide ap-
propriate guidelines for documents and procedures, The DIDs for this standard are prepared in a
tree structure so that, sections in higher level DIDs are expanded by lower level DIDs for use by
larger, more complicated projects For metrology software, only the top one or two levels of DIDs
need to be considered and these should be tailored to provide proper guidelines, The following list
of DIDs is suggested as a basis for tailoring:

SMAP-DID-P200-SW Software Requirements
SMAP-DID-P310-SW  Software Architectural Design

SMAP-DID-A200 Testing

* SMAP-DID-P400 Version Description
SMAP-DID-P500 User's Guide
SMAP-DID-M920 Configuration Management

Although the proposed package of DIDs looks imposing, it probably would only total about fifteen
pages if reformatted into a single document with deleted and redundant material removed,




61 General
6.1.1 Purpose

Concepts, principles and methods for the establishment and adjustment of intervals between
calibration for TME and standards are discussed in this section. The material presented has a
twofold purpose. For ground testing or measuring applications, the material is intended to guide
NASA agencies and contractors in selecting or designing calibration recall systems. For space-
based testing or measuring applications, the material is intended to provide alternatives to peri-
odic TME recalibration and to indicate factors to be considered in designing systems for extended
periods of use without recalibration or testing.

6.1.2 Scope

General information for establishing and adjusting calibration intervals is presented in this sec-
tion. Section 6.2 is devoted to management considerations, and Section 6.3 discusses technical
details of the calibration interval problem. SMPC methods as an alternative or supplement to pe-
riodic TME recalibration is discussed in Section 6,4, Concepts relevant to the technical manage-
ment of calibration SMPC system design and development projects are also given in Section 6.4.
Technical specialists should read Appendices B and D.

6.1.3 Background

The establishment and adjustment of calibration intervals is an activity that often drives test and
calibration support infrastructure managers to distraction. For most organizations, personnel are
not conversant with this highly specialized and often misunderstood subject, Nevertheless, the
task of developing calibration recall systems ordinarily falls to individuals with minimal back-
ground, This usually means “starting from square one,” only to discover after extensive effort that
the ensuing systems fail to achieve desired objectives and/or are unacceptable to auditors from
customer organizations.

The reasons for this are varied. First, the problem is complicated by the fact that calibration is
concerned with so many different types of equipment, e.g., electrical, electronic, microwave, phys-
ical, radiometric, etc. Second, each organization requiring calibration of TME and standards is
confronted with its own unique minimum reliability requirements, failure definitions, cost con-
straints and testing procedures, as determined by the product to be provided and by the individ-
ual customer’s application requirements, Third, it is often difficult to ascertain precisely what the
goals of a calibration interval establishment and adjustment methodology should be. This is due
in part to seemingly conflicting objectives that typically accompany product quality assurance,
Generally, these objectives are:

+ The customer’s requirement for high performance, accurate, high quality products

+ The producer’'s requirement for a high probability of product acceptance




+ The requirement for minimizing test and calibration costs, a requirement usually associ-
ated with the producer, but ofien of concern to both producer and customer.

Although satisfying all three requirements is often a difficult undertaking, methods and tech-
nigues have emerged for establishing and adjusting calibration intervals that promote meeting
both product assurance and cost control objectives.

6.1.4 Basic Concepts

To appreciate the need for maintaining calibration intervals and motivate the methodologies nec-
essary for their determination and adjustment, it is worthwhile to review several basic ideas.
First, it is important to keep in mtnd that test and calibration infrastructures are established to
ensure that end items, such as communication equipment, navigation systems, attitude control
systems, etc. perform as intended. Performance of such systems can be related to the various
measurable attributes that characterize them. For example, the ability of a microwave communi-
cation system to receive a weak signal is a function of its antenna gain (as well as other parame-
ters.) Hence, antenna gatn is a measurable attribute by which communication system perfor-
mance can be quantified. In this section, it is assumed that end items will not perform as in-
tended unless the values of their various measurable attributes are maintained within definable
limits. Providing assurance that these limits are maintained is the primary motivation for testing
and calibration.

The extent to which the value of a parameter of a given item of TME can be known at calibration
is determined by a number of variables, These include the uncertainty of the calibrating equip-
ment, the precision with which measurements can be made, the stability of the measurement
process, the skill of the calibrating individual, etc. Immediately following calibration, knowledge of
a parameter’s value is constrained to a range of values that can be fairly well specified. Afler a
time, however, this range becomes less well defined. Because of inherent random processes and
the diversity of usage and environmental stresses, parameter values tend to vary somewhat ran-
domly. This random variation spreads the distribution of parameter values from their “starting”
values at time of calibration (defined as BOP in Section 5,) As time passes, the spread of parame-
ter values Increases. Thus the uncertainty surrounding the value of each calibrated parameter
grows with time since calibration, Thts growth is depicted in Figures 6.1 and 6.2.
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FIGURE 6.1 — PARAMETER UNCERTAINTY GROWTH. Knowledge of the value of a calibrated pa-
rameter becomes less certain as time elapses stnce calibration. The case shown depicts a pa-
rameter whose value is known to drift linearly with time. The increased spreading of the up-
per and lower uncertainty curves is typical for this kind of time dependence.




TME and standards are calibrated at periodic intervals to limit the growth of mea-
surement uncertainty to acceptable limits. The calibration interval is determined
from considerations of whether the expected level of uncertainty growth has ex-
ceeded these limits.

It should be noted that, in many organizations, acceptable uncertainty limits are subjectively ar-
rived at. In organizations concerned primarily with ensuring measurement integrity, such as
high-level standards laboratories, such subjective determinations tend to be conservative, Le..
they tend to lead to intervals between calibration that are often shorter than maybe economically
justifiable, Conversely, in organizations that are concerned primarily with economics rather than

with measurement integrity, intervals between calibration often tend to be longer than is justifi-
able for prudent measurement uncertainty control.
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FIGURE 6.2 — MEASUREMENT UNCERTAINTY GRowTH. Growth in uncertainty 1s shown for the
parameter of Figure 6.1. The confidence in our knowledge of the parameter’s value dimin-
ishes as time since calibration elapses. This confidence is indicated by the bell shaped distri-
bution curves for times t;<ty<ts. The wider the spread of the curve, the greater the uncer-
tainty in the parameter value, The shaded areas represent the probability for parameter out-
of-tolerance. This probability increases as time elapsed Since calibration increases.

This section describes approaches for determining intervals between calibration that are com-
mensurate with both cost constraints and measurement integrity requirements.




6.2 Management Considerations

Certain management concepts relevant to the implementation and operation of TME calibration
recall systems are discussed here. The concepts presented are those that relate to designing, de-
veloping and maintaining a capability to establish optimal intervals between TME calibrations.

6.2.1 Establishing the Need for Calibration Interval Analysis Systems

TME employed to verify the uncertainty of measurement processes require calibration to ensure
that their verifying attributes are performing within appropriate accuracy specifications, Since the
uncertainties in the values of such attributes tend to grow with time since last calibrated, such
TME require periodic recalibration. For cost effective Operation, intervals between recalibration
should be optimized to achieve a balance between operational support costs and TME accuracy
requirements,

Different TME designs exhibit different rates of uncertainty growth, In addition, uncertainty
growth rates are influenced by different conditions of usage and environment, Consequently, not’
all optimal TME recalibration intervals are alike, If recalibration isto be optimized, therefore, a
unique interval is needed for each TME model employed under each specified set of usage and
environmental conditions. Establishing such intervals requires the application of advanced cali-
ration interval analysis methods.

6.2.2 Measurement Reliability Targets

TME are calibrated at periodic intervals to hold the growth of measurement uncertainty to within
acceptable limits, In so doing, the prolonged use of out-of-tolerance TME is prevented and the va-
lidity of TME calibrations, tests or other verifications are enhanced.

As Figure 6.2 shows, as the uncertainty in the value of a TME parameter grows, the probability
that the parameter will be found in-tolerance decreases. Controlling uncertainty growth to within
acceptable maximum is, therefore, equivalent to controlling in-tolerance probability to an accept-
able minimum, This acceptable minimum is referred to as the measurement reliability (or percent
in-tolerance.)

What constitutes an appropriate measurement reliability target is determined by the require-
ments for calibration accuracy. Measurement reliability targets are usually referenced to the end
of the calibration interval (EOP targets) or to a value averaged over the duration of the calibration
interval (AOP targets,)

6.2.3 Calibration Interval Objectives

The immediate objective of calibration interval analysis systems is the establish-
ment of calibration intervals that ensure that appropriate measurement reliability
targets are met.

A goal of any calibration interval analysis system should be that the cost per interval is held to a
minimum. This requirement, when coupled with the requirement for meeting measurement reli-
ability targets, leads to the following objectives of effective calibration interval analysis systems:

+ Establishment of appropriate measurement reliability targets




« Establishment or adjustment of intervals to meet relatability targets

«  Employment of algorithms and methods that arrive at the correct internals in the shortest
possible time

e Calibration intervals determined with a minimum of human intervention and manual
labor.

Experience with alternative approaches since the early 1960s has shown that these objectives can
be accomplished by employing the statistical calibration interval analysis methodologies described
in this Section and in Appendix B.

In addition to these objectives, calibration interval analysis systems should permit easy and ex-
pedient implementation of analysis results. The results should be comprehensive, informative and
unambiguous, Mechanisms should be in place to either couple the analysis results directly to an
associated equipment control system or to transfer information to the equipment control system
with a minimum of restatement or translation,

6.2.4 Potential Spinoffs

Because of the nature of the data they process and the kinds of analyses they perform, calibration
interval analysis systems are inherently capable of providing “spinoffs,”

One potential spinoff is the identification of TME with exceptionally high or low uncertainty
growth rates (“dogs” or “gems,” respectively.) As will be discussed in Section 6.3, dogs and gems
can be identified by TME serial number and by manufacturer and model. Identifying serial num-
ber dogs helps weed out poor performers and identifying serial number gems helps in selecting
items to be used as check standards. Model number dog and gem identification can assist in
making procurement decisions.

Other potential spinoffs include providing visibility of trends in uncertainty growth rate or cali-
bration interval, identification of users associated with exceptionally high incidence of out-of-tol-
erance or repair, projection of test and calibration workload changes to be anticipated as a result
of calibration interval changes, and identification of calibration or test technicians. who generate
unusual data patterns.

Calibration interval analysis systems also offer some unique possibilities as po-
tential testbeds for evaluating alternative reliability targets, adjustment policies,
and equipment tolerance limits in terms of their impact on calibration workloads.

6.2.5 Calibration Interval Elements

Implementing the capability for calibration interval analysis within an organization can have an
impact on facilities, equipment, procedures and personnel, To assist in evaluating this impact,
several of the more predominant elements related to calibration interval analysis system design,
development and maintenance are described below. These elements include:

« Data collection and storage

« Reliability modeling

«  Statistical analysis of calibration results




« Engineering analysis

o Logistics analysis

«  Cost/benefits

« Personnel requirements

« Training and communications.

6.2.5.1 Data Collection and Storage

Calibration history data are required to infer the time dependence of TME uncertainty growth
processes. These data need to be complete, homogeneous, comprehensive and accurate.

Completeness — Data are complete when no calibration actions are missing. Completeness is as-
sured by recording and storing all calibration results.

Homogeneity — Data are homogeneous when all calibrations on a homogeneous equipment
grouping (e.g., manufacturer/model) are performed to the same tolerances using the same proce-
dure.

Comprehensiveness — Data are comprehensive when “condition received” (condition as received
for calibration), “action taken” (correction, adjustment, repair, etc., executed during calibration),
and “condition released” (condition as deployed following calibration) are unambiguously specified
for each calibration, Date calibrated, date released, serial or other individual ID number, model
number and standardized noun nomenclature are also required for comprehensiveness. For de-
tection of facility and technician outliers, the calibrating facility designation and the technician
identity should be recorded and stored for each calibration. Finally, if intervals are to be analyzed
by parameter, procedure step number identification is a required data element.

Accuracy — Data are accurate when they reflect the actual perceived condition of equipment as
received for calibration, the actual servicing actions executed, and the actual perceived condition
of equipment upon return from calibration. Data accuracy depends on calibrating personnel us-
ing data formats properly. Often data accuracy can be enhanced by designing these formats so
that provision is made for recording all calibration results noted and all service actions taken,
Instances have been encountered where deficiencies not provided for on data input formats tend
to make their presence known in unrelated data fields. For example, stabilizing adjustments
made on in-tolerance parameters are sometimes wrongly (but intentionally) recorded as out-of-
tolerances.

6.2.5.2 Reliability Modeling

Uncertainty growth processes are described in terms of mathematical reliability models. Use of
these models greatly facilitates the determination of optimal calibration intervals and the realiza-
tlon of spinoffs already noted. Reliability modeling is described in Section 6.3 and in Appendix B.

6.2.5.3 Statistical Analysis of Calibration Results

Since equipment parameter drift and other fluctuations are subject to inherently random pro-
cesses and to random stresses encountered during usage, the analysis of parameter behavior re-
quires the application of statistical methods. Statistical methods are used to fit reliability models
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to uncertainty growth data and to identify exceptional (outlier) circumstances or equipment, The
methods are described in Appendix B.

6.2.5.4 Engineering Analysis

Engineering analyses are performed to establish homogeneous TME groupings (e.g., standardized
noun nomenclatures), to provide integrity checks of statistical analysis results, and to develop
heuristic interval estimates in cases where calibration data are not sufficient for statistical analy-
sis (e.g., initial intervals.)

6.2.5.5 Logistics Analysis

Logistics considerations need to be taken into account to synchronize intervals to achievable
maintenance schedules, Interval synchronization is also required in setting intervals for TME
models, such as mainframes and plug-ins, that are used together.

6.2.5.6 Costs/Benefits

Operating Costs -Obviously, higher” frequencies of calibration (shorter intervals) result in higher
operational support costs. However, because of uncertainty growth, longer intervals lead to higher
probabilities of using out-of-tolerance TME for longer. periods of time.

Determination of the balance between operational costs and risks associated with the use of out-
of-tolerance TME requires the application of methods described in Section 5 and Appendix C.
These methods enable optimizing calibration frequency through the determination of appropriate
measurement reliability targets,

Development/Maintenance Costs — Cost/benefits tradeoffs are also evident in budgeting for the
development and maintenance of calibration interval analysis systems. A significant factor is the
anticipated system life expectancy. Designing and developing interval analysis systems that em-
ploy state-of-the-art methods can be an expensive proposition, On the other hand, such methods
are likely to be more applicable to future TME designs and to future technology management re-
guirements than less sophisticated methods. This translates to greater system longevity and
lower life cycle maintenance costs,

Another significant factor is the benefit to be derived from calibration interval analysis system
spinoffs. Cost savings and cost avoidance made possible by these supplemental diagnostic and
reporttng capabilities need to be included with operational cost factors in weighing system devel-
opment and maintenance costs against potential benefits,

6.2.5.7 Personnel Requirements

Highly trained and experienced personnel are required for the design and development of statisti-
al calibration interval analysis systems, Besides advanced training in statistics and probability
theory, such personnel need to be familiar with TME uncertainty growth mechanisms in particu-
lar, and with measurement science and engineering principles in general, Knowledge of calibra-
tion facility and associated operations is required, as is familiarity with calibration procedures,
calibration formats and calibration history databases. In addition, both scientific and business
programming knowledge are invaluable for system development,




6.2.5.8 Training and Communications

Training and communications are required to apprise managers, engineers and technicians what
the interval analysis system is designed to do and what is requtred to ensure its successful oper-
ation. Agreement between system designers and calibrating technicians on terminology, interpre-
tation of data formats and administrative procedures is needed to ensure that system results
match real world TME behavior. In addition, an understanding of the principles of uncertainty
growth and an appreciation for how calibration data are used in establishing and adjusting inter-
vals are required to promote data accuracy.

Comprehensive user and system maintenance documentation are also required to ensure suc-
cessful system operation and longevity.

Unfortunately, calibration interval systems are not immune to “improvements”
made by personnel unfamiliar with system theory and operation,

A prime example of this is found in a Southern California company whose calibration Interval
system was designed and developed in 1978. Because it employs advanced methodologies and is
fully automated, the system is considered technologically viable by today’s standards.
Regrettably, its data integrity has been seriously compromised by personnel unfamiliar with its
design principles, These individuals mistakenly decided that certain important data elements
were superfluous and could be eliminated.

6.2.6 Extended Deployment Considerations

For some applications, TME cannot be calibrated according to recommended or established cali-
bration schedules, In these instances, alternatives or supplements to calibration are advisable.
One alternative involves the use of high accuracy ratios between TME parameters and end item
attributes. In cases where this is not feasible, a statistical process control supplement is recom-
mended.

6.2.6.1 High Accuracy Ratios

Experimentation with a prototype decision support system has shown that TME parameters that
are inherently and significantly more accurate than the attributes they support, seldom require
periodic calibration. Roughly speaking, TME parameters with significantly tighter tolerances than
the attribute tolerances they support, can forego calibration for extended periods. This is because
the values accessible to a parameter are usually physically constrained by design to prevent the
parameter from attaining values at extreme divergence from the stated tolerance limits. This
means that the range of values accessible to a TME parameter will remain well within the toler-
ance limit of the end item attribute it supports in cases where the relative attribute-to-TME pa-
rameter tolerance ratio is large, This ratio is traditionally referred to as the TME-to-end item
“accuracy ratio.”

A high accuracy ratio between a TME parameter and an end item attribute implies that the rela-
tive uncertainty between the measurement process and the attribute is low, From the discussion
in Section 4, it can be seen that this corresponds to a situation in which end item average utility
IS insensitive to test process uncertainty.

"What constitutes a “high® accuracy ratio is determined by case-by-case analyses, Such analyses
extrapolate parameter uncertainty growth to extended periods. This is done to determine whether
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maximum expected TME parameter uncertainties lead to inadequate testing of the attribute(s) to
be supported.

6.2.6.2 Statistical Measurement Process Control (SMPC)

SMPC methods have been developed in recent years to supplement periodic calibration of test and
calibration systems, These methods can be incorporated in automated test equipment (ATE), au-
tomated calibration equipment (ACE) and end items to provide on-line indicators of in- or out-of-
tolerance probability at the attribute or parameter level,

The methods employ Bayesian identities that permit role swapping between calibrating or testing
systems and units-under-test or calibration. By role swapping manipulation, recorded measure-
ments can be used to assess the in-tolerance probability of the testing or calibrating parameter.
The process is supplemented by knowledge of time elapsed since calibration of the testing or cali-
brating parameter and of the unit-under-test or calibration, The methods have been extended to
provide not only an in-tolerance probability for the testing or calibrating parameter but also an
estimate of the parameter’s error or bias.

Using these methods permits on-line statistical process control of the accuracies of TME parame-
ters. The methods can be incorporated by embedding them in measurement controllers,

The SMPC methods work best with a repository of intercomparison results to draw from. This is
an important point in selecting or specifying ATE or ACE memory sizes. If the new methods are to
be implemented, adequate controller or other memory should be planned for storing intercompar-
ison histories for parameters of interest,

0.3 Technical Considerations

Several ideas are key to the development of optimal calibration recall systems. These ideas are
central to deftning the calibration interval problem as one that addresses the control of TME mea-
surement uncertainty. The Itnk between the calibration interval problem and measurement un-
certainty control is established through transitioning of TME parameters from in-tolerance to out-
of-tolerance states.

6.3.1 The Calibration Interval Problem

To summarize the material presented so far, the calibration interval problem consists of the fol-
lowing

Determine intervals between TME calibrations that limit or control TME mea-
surement uncertainties to acceptable levels,

TME measurement uncertainties are controlled to limit end item test decision risk, Test decision
risk is, in turn, limited to control end item measurement uncertainties, Finally, end item mea-
surement uncertainties are controlled to ensure acceptable end item utility or performance, In
this way, calibration intervals impact end item performance. In keeping with the primary objective
of test and calibration support infrastructures, i.e., the support of end Items, calibration intervals
should be managed in such a way that their impact on end item performance is beneficial,




For TME and calibration standards installed on-board satellites or deep-space probes not acces-
sible for periodic recalibration, the principles of calibration interval analysis can still be used to
evaluate whether these devices can hold their respective tolerances over the duration of the mis-
sion they support.

6.3.2 Measurement Reliability

End item utility is related to the uncertainty of the process surrounding verification of end item
compliance with specifications. In Section 4 it was pointed out that a major component of test
process uncertainty is the uncertainty in the measuring parameters of the associated TME. As
implied by Figure 6.2, parameter uncertainty can be expressed in terms of parameter in-tolerance
probability.

For a given population of TME, the in-tolerance probability for a parameter of interest can be
measured in terms of the percentage of observations on this parameter that correspond to in-tol-
erance conditions. In Appendix B it is shown that the fraction of observations on a given TME pa-
rameter that are classified as in-tolerance at calibration is a maximum likelthood estimate (MLE) of
the in-tolerance probability for the parameter. Thus, since in-tolerance probability is a measure of
test process uncertainty, the percentage of calibrations that yield In-tolerance observations pro-
vides an indication of this uncertainty. This leads to using “percent observed in-tolerance” as the
variable by which test process uncertainty is monitored.

The percent observed in-tolerance is referred to as measurement reliability. Measurement reliabil-
ity is defined as:

MEASUREMENT RELIABILITY — The probability that a measurement attribute
(parameter) of an item of equipment is in conformance with performance specifi-
cations.

An effective way to impose a limit on measurement process uncertainty involves the application of
a minimum acceptable measurement reliability criterion or measurement rellability target. A pri-
mary objective of optimal calibration interval analysis is, accordingly,

Establish measurement reliability targets commensurate with end item utility ob-
jectives, and test and calibration support cost constraints, ‘

The connection between end item utility and TME measurement reliability has been described,
Cost considerations are another matter. Since costs involve not only obvious factors, such as cost
of calibration and repair, but also include indirect costs associated with false accepts/rejects,
system downtime, product liability lawsuits, warranty expenses, etc., finding the balance between
attaining a desired level of measurement reliability and what it costs to attain it is a multifaceted
and difficult process. The process is described in Appendix C.

In practice, many organizations have found it expedient to manage measurement reliability at the
instrument rather than the parameter level, In these cases, an item of TME is considered out-of-
tolerance if one or more of its parameters in found out-of-tolerance. Variations on this theme are
possible,
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6.3.3 Calibration Interval System Objectives

The effectiveness of a system designed to control test process uncertainty is measured in terms of
how well actual TME in-tolerance percentages match established measurement reliability targets.
A primary objective of any system created to determine and adjust TME calibration intervals is:

Estimate calibration intervals that yield the desired measurement reliability tar-
get(s), i.e., determine “optimal” intervals.

Since measurement uncertainty grows with time since calibration (see Figures 6.1 and 6.2), mea-
surement reliability decreases with time since calibration, The particular time since calibration
that corresponds to the established measurement reliability target is. the optimal calibration in-
terval. In some applications, periodic TME recalibration are not possible (as with TME on board
deep space probes) or are not economically feasible (as with TME on board orbiting satellites.] In
these cases, TME measurement uncertainty is controlled by designing the TME and ancillary
equipment or software to maintain a measurement reliability level which will not fall below the
minimum acceptable reliability target for the duration of the mission,

A second objective of calibration interval analysis systems is:

Determine optimal intervals in the shortest possible time at minimum expense
and minimum negative impact on resources.

In practice, the relationship between ttme since calibration and measurement reliability is sought
in a number of ways, Not all approaches work, Some work in principle, but fail to do so within the
lifetime of the TME of interest,

In many instances, the connection between the out-of-tolerance process and calibration interval
is not well understood. This leads to intervals that are suboptimal with respect to the above ob-
jectives. It is worthwhile to consider the consequences of such suboptimal systems. Appendix B
describes these consequences in detail and provides guidelines for establishing optimal systems.

6.3,4 The Out-of-Tolerance Process

TME are subjected to stresses that occur randomly during use and/or storage. For many electri-
cal and electronic TME parameters, these stresses cause shifts in value that occur randomly with
respect to magnitude and direction. Although the parameters of certain mechanical and dimen-
slonal TME may shift or drift in ways that are fairly predictable, they too are subject to stresses
that cause random changes in value. Besides sensitivity to externally applied stresses, high pre-
cision TME also exhibit shifts in parameter values arising from inherent random processes,

Just as gases of randomly moving molecules expand to fill containers, random TME parameter
variations tend to spread across the spectrum of all accessible values, This is the principle behind
uncertainty growth. The rate at which parameter values spread is the uncertainty growth rate.
Since uncertainty growth arises from random processes, out-of-tolerances occur as random
events, Out-of-tolerance events can be used to infer information about underlying uncertainty
growth processes,

This is done by constructing “experiments” in which samples of TME are calibrated at various
times elapsed since calibration. (In practice, experiments of this kind are not carried out, Instead,




samples are taken from calibration history data.) Measurement reliability estimates are obtatned
for each sample by dividing the number observed in-tolerance by the number calibrated in the
sample, These estimates are arranged chronologically to form a time serles (see Appendix B.) The
uncertainty growth process is inferred from the time series through measurement reliability
modeling. The calibration interval determination process is summarized in Table 6.1.

TABLE 6.1

Calibration Interval Key Ideas

Measurement Reliability o
.Probability that a TME parameter is in-tolerance

Measurement Reliability Targets
.Percent in-tolerance objectives for TME parameters

Goals of Optimal Calibration Intervals

. Establish recalibration schedules that ensure that measurement
reliability targets are maintained

.Determine intervals in the shortest possible time at minimum expense
and minimum negative impact on resources

The Out-of-Tolerance Process

.Out-of-tolerances occur as random events

+ The uncertainty growth process governs the rate of these occurrences
« The uncertainty growth process can be described as a time series

. The out-of-tolerance process is modeled using time series analysis

Measurement Reliability Modeling

.Represent the time series with mathematical reliability models

. Construct the likelihood functions

» Obtain maximum likelihood estimates of reliability mode! coefficients
(analyze the time series to infer the uncertainty growth process)

. Select the appropriate reliability model

Calibration Interval Estimation
. Set the reliability model equal to the reliability target and solve for the
interval

6.3.5 Measurement Reliability Modeling

A number of uncertainty growth processes are possible. Each process corresponds to a particular
mathematical description or model. Each model consists of a mathematical form characterized by
statistical parameters. Models are used to represent the observed measurement reliability time
series described in the previous section. Q

A model is considered as a possible representative of an uncertainty growth pro-
cess when its statistical parameters have been adjusted to achieve the closest
agreement possible between the model and the observed time series.




The method employed for achieving this agreement is referred to as MLE. The MLE method is de-
scribed in Appendix B. By submitting each model to a statistical and engineering select-ton proce-
dure, the model that best represents the uncertainty growth process can be identified.

The selected model is used to compute measurement reliability as a function of time. The desired
calibration interval is determined by setting the computed measurement reliability equal to the
measurement reliability target established for the TME under study. The procedure is described
in Appendix B.

6.3.6 Calibration Interval Assignment and Adjustment

Calibration data need to be reviewed periodically to refine or modify existing calibration intervals.
This is motivated by three considerations, First, the “accuracy” with which reliability modeling
represents the out-of-tolerance process is generally influenced by the amount of calibration data
used to estimate the reliability model coefficients and to select the appropriate model. Other fac-
tors being equal, the more data, the better the results. Second, as TME populations age, their
characteristic uncertainty growth rates may accelerate. By reviewing updated calibration data pe-
riodically, uncertainty growth rate changes can be detected and adjusted to. Third, periodic re-
view is required to respond to changes in calibration procedures, A calibration procedure change
may produce changes in recorded out-of-tolerance rates and require discarding of calibration
history before the date of the change,

An interval adjustment may either shorten or lengthen an interval, In the discussion that follows,
both adjustments are treated on an equal footing, with no distinction made between the QA ap-
proval requirements for, or advisability of each, The discussion merely assumes that any interval
adjustment (longer or shorter) is based on supporting data and that the adjustment is made In
such a way as to strive toward meeting specified reliability targets. There are three major levels at
which calibration interval adjustments are implemented:

+ Adjustment by serial number
e Adjustment by model number family

« Adjustment by instrument class.

6.3.6.1 Adjustment by Serial Number .

Serial Number Analysis — Even though serial numbered items of a given manufacturer/model
group are inherently similar, they are not necessarily identical, Also, the nature and frequency of
usage of individual items and their respective in-use environmental conditions may vary. Thus,
some may perform better and others may perform worse than the average, For this reason, some
organizations analyze calibration intervals at the individual serial number level, The various
methods used base such analyses on the calibration history of each item and give simple-to-
complicated rules or look-up procedures for interval adjustment. Most of these methods assume
that the “correct” calibration interval for an individual instrument is subject to change over its life
span, and that, therefore, only data taken from recent calibrations are relevant for establishing its
interval,

It has been shown that not enough relevant data can ordinarily be accumulated at the single se-
rial number level to establish a “correct” interval for an individual item. Even if the restriction of
using only recent data could be lifted, it would normally take somewhere between fifteen and sixty




years (often longer than the instrument’s useful life) to accumulate sufficient data for an accurate
analysis.

These considerations argue that calibration interval adjustment for a given serial
numbered item cannot ordinarily be justified solely on the basis of an analysis of
calibration data taken on the serial number,

Serial Number Assignment and Adjustment — Although calibration interval analysis at the serial
number level may not be feasible in most applications, calibration interval adjustment may be
feasible at this level if such adjustment is made with the cognizance that sufficient data must be
accumulated to justify the action. Appropriate serial number interval adjustment approaches in-
volve calibration interval analysis at the model number or some other grouping level, with interval
adjustment performed at the serial number level,

Such adjustments take into account whether calibration data taken on the serial numbered item
in question are homogeneous with calibration data taken on the grouping, The decision whether
to adjust would be influenced by statistical tests of this homogeneity to evaluate the appropriate-
ness of calibrating the serial numbered item at the frequency established by the calibration inter-
val for the group.

Special measurement relatability target requirements may pertain to the serial numbered item, If a
given serial numbered item requires a higher measurement reliability than is normally assigned
for routine applications, the computed interval (see Appendix B) -for the grouping, based on this
higher target, can be assigned to the individual item,

Parameter Within Serial Number Analysis — If calibration data are recorded and analyzed by in-
strument parameter, further serial number calibration interval fine-tuning is possible. This in-
volves accumulating and analyzing data on specific parameters for each manufacturer/model
level grouping of interest, The recommended analytical methods are the same as those used for
analysis at the manufacturer/model level, with reliability targets imposed by parameter instead of
by manufacturer/model, This results in calibration intervals being established by parameter.
Calibration Intervals can be assigned at the serial number level by selecting the shortest applica-
ble parameter interval, In this approach, known as Ferling's method, only those parameters used
for each serial numbered item are involved in the selection process. Further refinement is possible
If individual measurement reliability targets are exercised at the parameter level.

6.3.6.2 Adjustment by Model Number Family

Model Number Analysis -Each serial numbered item of a given model number family is typically
built to a uniform set of design and component specifications. Moreover, even though design
and/or production changes may occur, items of the same model number are generally expected to
meet a uniform set of published performance specifications. For these reasons, most serial num-
bered items of a given model number should be expected to exhibit homogeneous measurement
relatability behavior over time, unless demonstrated otherwise,

The model number identification is unique and hence makes possible a systematic accumulation
of homogeneous calibration history. In some cases, enough model number data for a valid statis-
tical analysis can be accumulated in less than a year, where there are large inventories of a model
number and short intervals.

The following conditions are necessary to ensure the accuracy and utility of adjustments based
on these analyses
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(1) Calibration history data are complete and comprehensive: a good rule is to require data to
be maintained by serial number with all calibrations recorded or accounted for.

(2) Calibration history data are homogeneous, To ensure the validity of the calibration inter-
val “experiment-, data need to be homogeneous with respect to the level (parameter, serial
number, model number, instrument class) at which interval analysis is o be performed
and with respect to the calibration procedure and parameter tolerances used.

(3) Calibration history data are reviewed and analyzed, and calibration intervals are adjusted
in accordance with the guidelines given in (f) below.

(4) Mathematical fatlure models are used to model measurement reliability behavior and the
model or models used are appropriate: i.e., they model the process by which equipment
transitions from an in-tolerance to an out-of-tolerance state. Mathematical models that
have been found useful for this purpose are described in Appendix B. Other models can
be found in the reliability analysis and statistics literature or can be specially constructed
to represent the specific in-tolerance to out-of-tolerance transition mechanisms of
interest.

(5) Analysis techniques for fitting reliability models to calibration history data are based on
statistically valid methods, Such methods include the method of moments, maximum
likelihood estimation, least squares analysis, or Bayes estimation, The method advocated
in this Handbook is maximum likelihood estimation, It is described in Appendix B.

(6) Interval adjustments are made in such a way that reliability requirements are not com-
promised. Interval extensions that reduce calibration costs are encouraged, provided reli-
ability targets are adhered to,

Some amplification is needed as to when review and analysis of calibration history data are ap-
propriate, Review is appropriate when any of the following applies:

(1) Sufficient data to justify a reanalysis have been accumulated.

(2) Some relevant procedural or policy modification (changes in calibration procedure, relia-
bility target, equipment application or usage, etc.) has been implemented since the previ-
ous Interval assignment or adjustment.

(3) Equipment is known to have a definable performance trend, and enough time has elapsed
for the trend to require an interval change.

Notwithstanding these criteria, quarterly to annual review and analysis should be sufficient for all
but “problem” equipment, critical application equipment, etc.

Dog/Gem Identification — The requirements for valid calibration intervals, based on analysis of
data sufficient for accurate measurement reliability modeling, and the need for responsiveness to
instrument idiosyncrasies can both be accommodated by incorporating a means of statistically
identifying exceptional items within a homogeneous grouping, In such schemes, calibration data
are indexed by item for the grouping. Items with significantly higher and lower out-of-tolerance
frequencies than are characteristic of the group maybe flagged by a unique item identifier (e.g.,
serial number, procedure step number, etc.) Statistical outliers identified in this way are com-
monly referred to as “dogs” (high out-of-tolerance rate) and “gems” (low out-of-tolerance rate.) In
particular, the presence of dogs unduly shortens the calibration interval for other items in the
grouping. Removing these outliers provides greater assurance that the assigned interval is repre-
sentative, Finally, flagging outliers ensures responsiveness to individual behavior.




Dog/Gem Management — Various methods may be devised for identifying such outliers. The pre
ferred methods are statistical. Once outliers are identified, considerable latitude is possible “re-
garding their disposition. For example, dogs may require shortened intervals, complete overhaul,
removal from service, certification for limited use only, etc. On the other hand, gems may qualify
for lengthened intervals, designation as critical support items or upgrade to higher level stan-
dards.

6.3.6.3 Adjustment by Instrument Class

In some cases, sufficlent data for calibration interval analysis may not be available at the model
number level, One method of compensating for insufficient model number data involves the cre-
ation of larger approximately homogeneous groupings of equipment that may contain several
model numbers, Such groupings are referred to as instrument classes. Pooling the calibration
histories from model numbers within a class often yields sufficient data for analysis. The results
of such analyses may be applied to model numbers within the class for which data are sparse or
unavailable. Once a class has been defined, statistical homogeneity tests should be performed
whenever possible to verify the validity of the equipment grouping,

Several criteria are used to define a class, These include commonality of function, application, ac-
curacy, inherent stability, complexity, design and technology. One class definition scheme that
has proved useful consists of subgrouping according to accuracy, stability, complexity and date of
issue within standardized noun nomenclature categories,

Calibration Interval analysis at the class level is performed in the same way as analysis at the
model number family level, with data grouped according to class for interval analysis and by
model number for dog and gem analysis. That is, dogs and gems are identified at the manufac-
turer/model number level.

6.3.6.4 Initial Intervals

At the commencement of an equipment’s life cycle, its calibration recall process is inaugurated
with an initial interval. Since the equipment will be new to the inventory, calibration history data
will usually be unavailable. This may call for subjective or engineering analysis methods of initial
interval assignment, The assignment of initial calibration intervals should utilize all available
calibration data and should promote the efficient generation of new data. Numerous methods are
currently in use or are projected for future use, A sample of these is discussed below.

General Intervals —The most expedient way of introducing equipment into the calibration process
is to assign an initiating recall cycle that is common for all new items. New items will remain on
this interval until their calibration data indicate an interval adjustment is appropriate. A conser-
vative (i.e., short) Interval will accelerate the generation of calibration history, thereby tending to
spur the determination of an accurate interval. However, this expedient may set shorter intervals
than necessary, leading to high initial calibration support costs and unnecessary equipment
downtime due to frequent recall for calibration, Fortunately, more accurate initial intervals can be
obtained by employing certain refinements, as discussed below.

Engineering Analysis — If available relevant calibration data are insufficient for analysis, engi-
neering analysis may be needed to establish initial intervals, Initial interval engineering analysis
includes establishing similarity between equipment, evaluating manufacturer recommendations,
assigning instrument class designations, or evaluating externally available intervals,
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Related Models/Similar Equipment 4n some cases, a new TME is an updated version of an exist-
ing product line. It may be the same as its predecessor except for a minor or cosmetic modifica-
tion. In such cases, the new TME should be expected to have performance characteristics similar
to its parent model. Often, the parent model will already have an assigned calibration interval

based on the analysis of calibration history. If so, the new model can be tentatively assigned the
recall interval of the parent model.

In like fashion, when no direct faintly relationship can be used, the calibration interval of similar

equipment or equipment of similar complexity and employing similar technologies maybe appro-
priate.

Manufacturer Data/Recommendations — Another source of information is the manufacturer of the
equipment. Manufacturers may provide recommended calibration interval information in their
published equipment specifications. These recommendations are usually based on analyses of
stability at the parametric level. To be valid, the specifications need to accommodate three con-
siderations.

(1) The parameter tolerance limits
(2) The duration over which the parameter values will be contained within these limits

(3) The percentage of items whose parameters will be contained within these limits over this
duration

Unfortunately, it appears that TME manufacturers are typically cognizant of only one or, at best,
two of these points. Accordingly, some care is appropriate in employing manufacturer interval
recommendations, If manufacturer recommended intervals per se are in question, supporting
data and manufacturer expertise may, nevertheless, be helpful in setting accurate initial inter-
vals.

Another option is to require the manufacturer to demonstrate the capability of equipment to meet
a prescribed measurement reliability target, To do this, the manufacturer would have to either
enter into a product demonstration interval verification test using a random sample of production
units, or accumulate stability data at the TME parameter level and determine a maximum likeli-
hood distribution of times to out-of-tolerance. Such information can be employed to estimate
measurement reliability levels corresponding to times between calibration,

Design Analysis — Another source of information is the TME design, Cognizant, knowledgeable
engineers can provide valuable information by identifying, describing and evaluating the calibra-
tion critical circuits and components of the TME in question, An accurate calibration interval
prediction is sometimes possible in lieu of calibration history data when equipment measurement
parameter aggregate out-of-tolerance rates (OOTR) are determined via circuit analysis and parts
performance, (OOTR is the inverse of the mean-time-between-out-of-tolerances (MTBOOT) re-
ferred to earlier.) The O0TR can be applied in mathematical reliability models, as if it were ob-
tained from calibration history data, to determine an initial calibration interval estimate,

Instrument Class Assignment — If a new item can be assigned membership in an instrument
class, the interval for the class will be applicable as an initial interval. Assignment in a class
should be made according to the criteria previously discussed.

External Authority — If engineering analysis is not feasible, calibration intervals determined by an
external organization may be usable, It is strongly recommended that the external organization be
similar to the requiring activity with respect to reliability targets, calibration procedures, usage,
handling, environment, etc. In case there are differences in these areas, adjustments need to be




made in the “borrowed” intervals, The magnitude and direction of these adjustments should be
cognizant of the engineering considerations outlined above.

Adjustments for reliability targets may sometimes be made mathematically. For example, suppose
that a model number family can be modeled by the negative exponential function R(f = exp(-i9,
where the parameter A is the 00TR for the model number family. Then, if the relatability target and
interval for the external authority are R* and I, respectively, the failure rate parameter A can be
obtained from

If the reliability target for the requiring organization is r*, the appropriate interval is calculated as

_~Inr*

interval 2

In rt
In R” [13
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Intervals may also be computed from externally generated calibration history data, For example,
the Department of Defense shares data among the services. Large equipment reliability data
bases may also be consulted, As a word of caution, some foreknowledge is needed of the quality
and relevance of data obtained externally to ensure compatibility with the needs of the requiring
organization.

6.3.7 Multiparameter TME

In discussing the relationship between TME calibration intervals and measurement reliability tar-
gets, it has been implicit that the item for which the calibration interval is being adjusted is the
item that has been assigned the measurement reliability target. In the foregoing, measurement
reliability targets have been keyed to individual TME parameters, This is a natural consequence of
the fact that TME usage requirements are best defined at the parameter level. However, TME are
recalled for calibration at the instrument or system level. Thus, the calibration interval applies to
the whole TME. This presents a problem for TME comprised of more than one parameter. Namely,
that of establishing a calibration interval for. the entire instrument that is based on measurement
ratability considerations for each individual constituent parameter.

6.3.7.1 Multiparameter TME Intervals

Calibration intervals for multiparameter TME can be arrived at in a number of ways. One of the
most effective ways involves describing the TME in terms of a “measurement reliability network”
in which each parameter is considered as a component of a functioning entity, The performance
of the entity is measured in terms of the contributing performances of each parameter. For many
TME applications, not all parameters are considered equal, Some may be highly critical, while
others may provide only low level support, Depending upon the application, a definable subset of
parameters may have no use at all, These considerations lead to weighting schemes in which pa-
rameter criticality is taken into account.

The simplest illustration of such a weighting scheme would be a two parameter TME employed in
an application requiring use of only one of the parameters. In this case, the useful parameter
would be assigned a weight of 1, while the unused parameter would be assigned a weight of O,

i et aee o S mes S onb Sy N s S Sy S A S



If both parameters were of equal criticality, each would receive a weight of 0.5. To illustrate how
such a weighting scheme relates to calibration interval determination, let RI(1) and Ro(I) repre-
sent the in-tolerance probabilities of parameters 1 and 2, respectively, for a calibration interval I
If each is given an equal criticality weight coefficient, (c) then the “weighted” measurement reliabil-
ity for the TME Is given by

R(I) = 0.5 Ry(I) + 0.5Rq(1) .

Suppose that an overall measurement reliability target has been determined for the TME. If this
target is labeled R*, then the interval is obtained by setting R({I) = R* and solving for I (Note that
with criticality weighting schemes, individual parameter measurement reliability targets are im-
plicit in the weighting factors,) If parameter 1 were assigned a weight of, say, ¢,= 0.7, then the
interval I would be solved from

0.7R)(I) + 0.3Ry(I) = R*.

The situation is complicated by the fact that, in addition to unequal criticalities, parameters are
not always used at the same frequency or rate, This should somehow be factored into the equa-
tion. For example, if parameter 1 is used three times as often as parameter 2, then the in-toler-
ance status of parameter 1 should have a greater bearing on the TME calibration interval than
parameter 2. This is accounted for by the demand weight coefficlent, (d.) Calculating the demand
function is similar to calculating the criticality weights but is slightly more complicated in that
the sum of products of demand weight values and criticality weights needs to be normalized to
unity. This is facilitated by expressing both the criticality and demand weights as ratios. For ex-
ample, for a 3:1 demand ratio (D = 3) for parameters 1 and 2, combined with the criticality

weighting ratio (C = 0.7/0.3) of the previous example, the TME measurement reliability for the
calibration interval I can be calculated as follows:

diunRy(I) + dawaRe(I) = R*
where the criticality and demand weighting coefficients are obtained from

C
wy = ———
1= cth

wy =1-w

Extension to more than two parameters is fairly straightforward. It should be noted that the fore-
going has assumed that parameters 1 and 2 are independent of one another, If this is not the
case, then solving for I becomes considerably more complex and is beyond the scope of this dis-
cussion,

The question arises that, since criticalities and demand coefliclents are determined at the param-
eter level, what guides the determination of the measurement reliability target R* for the TME?
The answer lies in the fact that the weights wy.wa. represent relative criticalities of parameters
1, 2,.... The absolute criticalities come about as a result of assigning a criticality to the TME at
the instrument level, This criticality is embodied in R*.




Determination of criticality weighting factors and demand coefficients maybe beyond the capabil-
ity of many TME users, If so, some other technique for solving for I for mulliparameter TME is
needed that bypasses these determinations. The most promising method reported to date was
proposed by Ferling in 1987. In Ferling's method, the interval for the TME is set equal to the
shortest individual parameter interval. While this approach may at first appear overly simplified,
it works very well from the standpoint of measurement reliability assurance. It offers a modera-
tion of the traditional extreme view that all parameters of a multiparameter TME must be in-tol-
erance for the TME itself to be considered in-tolerance. By focusing attention on the “least reli-
able” parameter, it does this without compromising measurement uncertainty control,

Ferling's method is Implemented as follows: If the measurement reliability models (see Appendix
B) for the TME parameters are represented by Ri(t).Ra(t).-., Ri(l). and the individual parameter
measurement reliability targets by RI, R2""'R;c- then the TME interval is equal to I, where
I;<Ii.i# j, and where R,(I;) = R; o . Note that, with Ferling's method, parameter criticalities and
dlemand coefficients are incorporated in the individual parameter reliability targets,

6.3.7.2 Stratified Calibration

The use of Ferling’s method of setting multiparameter TME calibration intervals suggests a cali-
bration approach that provides maximum support at minimum cost, In this approach, only the
shortest interval parameter(s) is calibrated at each TME resubmission, The next shortest interval
parameter is calibrated at every other calibration, the third shortest at every third calibration and
so on. Such a calibration schedule is similar to maintenance schedules that have been proven ef-
fective for both commercial and military applications, The term applied to a calibration schedule
of this type is stratjfied calibration.

In stratified calibration, the shortest parameter interval is compared to intervals for other param-
eters to develop a scheme in which parameter intervals are whole number multiples of the short-
est parameter interval, This ordinarily involves a certain amount of “rounding off* or approximat-
ing, For example, suppose the TME of interest is a three parameter instrument with parameter
intervals of

I; = 3.3 months

Iy = 7.6 months

I3 = 17.1 months .

A stratification scheme that strictly adheres to measurement reliability requirements would set
the parameter intervals at

I,' = 3 months
12' =6 months

13' =12 months .

From a detailed review of the measurement reliability function, it may turn out that calibration of
the third parameter at 18 months does not compromise its measurement reliability to a signifi-
cant extent. If so, the stratified calibration scheme would be established at
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I,' =3 months
12' = 6 months
13' =18 months .

By focusing calibration on only the subset of parameters that are due for service, stratified cali-
bration schemes can offer significant potential operating cost savings without compromising TME
measurement reliability. These schemes allow servicing to be performed without the need for
special services out of sync with normal service cycles.

6.3.8 Equipment’Adjustment Considerations

During calibration, decisions are made whether to adjust or correct parameters under test.
Typically, TME is adjusted to match the values of its calibrating TME. Three categories of adjust-
ment practice are encountered:

1. Adjust if failed only — With this practice, parameter values are adjusted only if found
outof-tolerance, This practice has been advocated as beneficial for parameters whose un-
certainty growth is best controlled if the values of in-tolerance parameters are not tam-
pered with. It has also been advocated in the past, due to analytical state-of-the-art limi-
tations, that only falled items be adjusted to enable reliability analysis of data, This limita-
tion is no longer applicable.

2. Adjust always — This practice advocates optimizing or adjusting to “center of tolerance
band” all parameters calibrated, regardless of in- or out-of-tolerance status, Analytical re-
sistance to this practice has softened since the mid ‘seventies with the development of
statistical tools appropriate for the analysis of adjust always data,

3. Adjust as needed — The practice of adjust as needed employs limits, not necessarily equal
to a given parameter’s tolerance lmits, which signals a need for adjustment or correction.
If parameter values are found outside the specified % of the tolerance band, they are ad-
justed to center spec. If parameter values are found within the specified % of the tolerance
band, they are lefR undisturbed,

Current Interval analysis technology can accommodate all three adjustment practices, the only
condition being that it must be known whether an adjustment action took place or not, This
means that adjustment information must accompany each parameter calibration record.

Certain automated calibration systems adjust parameter values by employing software correc-
tions rather than physical adjustments. Software corrections are not physically intrusive and are,
accordingly, usually applied whether parameters are in- or out-of-tolerance, In automated cali-
bration, correction factors are stored internally in the workload TME memory and are applied to
all measurements made using the parameter or parameters under consideration,

Over well-behaved portions of a parameter’'s operating curve such corrections are entirely equiva-
lent to physical adjustments. However, if parameter values drift or otherwise transition to unsta-
ble portions of their respective operating curves, software corrections alone are not advisable,
This is because, in unstable portions of operating curves, parameter values shift at a faster than
usual rate. A software correction in an unstable operating region is not as viable over an interval
of time as it would be if made in a stable region. What this means is that parameters that are
functioning in unstable portions of their operating curves and that are adjusted via sofiware cor-
rections would require shorter calibration intervals than if they were operating in stable portions
of these curves.




Software corrections should be limited to stable operating curve regions.
Parameters that drift to ‘unstable regions are to be physically adjusted to stable
regions as needed.

6.3.9 Establishing Measurement Reliability Targets

Establishing measurement relatability targets involves a consideration of several tradeoffs between
the desirability of controlling measurement uncertainty growth and the cost associated with
maintaining such control. The tradeoffs are applicable whether the objective is managing a
ground-based calibration interval analysis system or designing TME for spaceflight applications.

Establishment of an appropriate measurement reliability target is a multifaceted process. The
major potnts in establishing a measurement reliability target are the following

* TME measurement reliability is a measure of TME uncertainty
« TME uncertainty is a major contributor to the uncertainty of the end item’s calibration

« The uncertainty of the end item’s calibration impacts the uncertainty of the measure-
ments made with the end item

« Measurement uncertainties impact end item usefulness.

Given that the immediate objective of setting a measurement reliability target is the control of
TME measurement uncertainty, the above list provokes three central questions:

(1) How much does TME parameter uncertainty contribute to calibration uncertainty?
(2) How sensitive is end item uncertainty to calibration uncertainty?

(3) How sensitive is end item utility to end item uncertainty?

The impact of TME uncertainty on total test process uncertainty can be established by consider-
ing end item attribute value distributions resulting from testtng with TME exhibiting maximum
uncertainty (the lowest level of TME measurement reliability achievable in practice) ‘and minimum
uncertainty (measurement reliability = 1.0,) If the range of end item attribute values obtained un-
der these extremes is negligible, then TME uncertainty is not a crucial issue, and measurement
reliability targets can be set at low levels. In certain cases, it may even be determined that peri-
odic recalibration of TME is not required.

If, however, end item uncertainty proves to be a sensitive function of TME uncertainty, then TME
measurement reliability takes on more significance, and measurement reliability targets must. be
set at high levels. Establishing optimal TME measurement reliability targets that are commensu-
rate with end item support requirements involves the use of specialized vertical uncertainty prop-
agation and test decision risk analysis methods. These methods are described in detail in
Appendix C. It should be stressed that not all cases are clear-cut with regard to the conditions
listed in Table 6.2, Considerable ambiguity and numerous gray areas are likely to be encountered
in practice.

For space-based applications, there is often no calibration interval per se. TME are operated with-
out recalibration over a period of ttme that is often equivalent to the mission lifetime, In these
applications, designtng systems that will perform within required levels of accuracy is equivalent
to designing systems that are inherently stable or that can tolerate low measurement reliability
targets. From the foregoing, it is apparent that this can be achieved if the TME system is “over-
designed relative to what is required to support end item tolerances. Such over-design may in-
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volve the incorporation of highly stable components, built-in redundancy in measurement sub-
systems, etc. Alternatively, in cases where end item tolerances are at the envelope of high-level
measurement capability, it may be necessary to reduce the scope of the end item’s performance
objectives. Another alternative involves the use of supplemental measurement assurance mea-
sures as discussed in Section 6.4 and Appendix D.

TABLE 6.2

Measurement Reliability Target Rough Guidelines

AR AR

TME MEASUREMENT

CONDITION :
End item utility is insensitive to attribute value <60% *
Range of acceptable end item attribute values <60%

islarge relative to test process uncertainty

Alternative (redundant) independent TME < 60% - 80%

are planned for concurrent use

End item application is critical >90%

End item backups are unavailable >90%

6.3.10 The Interval Analysis Process

The process of establishing calibration intervals and/or evaluating measurement reliability over
extended periods of time is summarized in Table 6.3 and consists of the following steps:

STEP1. Determine end item performance requirements in terms of acceptable
end item attribute values,

This involves evaluations of end item utility vs. attribute value for each end item attribute. Based
on these evaluations, meaningful end item attribute uncertainty limits or performance tolerance
limits can be established. Testing, measuring or monitoring end items to these limits is performed
to ensure that end item attributes will perform as intended,

STEP 2. Determine TME parameter tolerances that correspond to acceptable
test process uncertainty.

Controlling end fiem attribute uncertainty through testing, measuring or monitoring requires that
test process uncertainty be constrained to appropriate limits. As discussed in Sections 4 and 5,
uncertainty in TME parameter values is a major contributor to overall end item test process un-
certainty. TME uncertainty is controlled by e¢alibration to ensure compliance with established
TME parameter tolerance limits. In addition, by evaluating false accept and false reject risks re-
sulting from relative uncertainties of the test process and the end item attributes, end item at-
tribute test tolerance limits can be developed that compensate for these risks,




STEP3. Determine appropriate measurement reliability targets for TME
parameters,

Controlling TME uncertainty requires that TME parameters be maintained within tolerance limits
at some level of probability commensurate with test process uncertainty constraints. This prob-
ability level is the measurement reliability target.

STEP 4.  Collect data on TME parameters to provide visibility of TME uncertainty
growth processes.

Visibility of the uncertainty growth process for each TME parameter is obtained by sampling the
time series that reflects this process. Data can be collected through recording the results of peri-
odic calibrations for TME deployed in ground based applications or can be accumulated through
controlled experimentation during TME design and development, For the latter, care must be ex-
ercised to match the experimental conditions with those anticipated in actual usage,

STEP 5.  Determine reliability models and coefficients using maximum likelihood
estimation methods.

For most TME applications, the transition from an in-tolerance to -an out-of-tolerance state is es-
sentially a random phenomenon, Transition phenomena can be modeled using mathematical
functions characterized by a mathematical form with appropriate coeflicients. Sampled uncer-
tainty growth time series data are used to estimate the values of these coefficients,

STEP 6. ldentify the TME parameter uncertainty growth process. Select the
appropriate measurement reliability model,

In some cases, the uncertainty growth mechanism and associated uncertainty growth process are
known prior to analysis and the appropriate reliability model can be selected a priori In most
cases, however, the uncertainty growth process is revealed through analyzing data employing a
set of candidate reliability models. Statistical tests can be applied a posteriorito select the model
that provides the best uncertainty growth process representation,

STEP 7. Compute calibration intervals commensurate with appropriate
measurement relatability targets.

This involves setting the modeled measurement reliability function equal to the measurement re-
liability target and solving for the interval, Thts solution is a maximum likelthood interval estimate,
Decisions to adjust existing intervals can be assisted by determination of upper and lower calibra-
tion interval confidence limits. If current assigned intervals fall outside these limits, the intervals
are adjusted to the maximum likelihood estimates,

The process of establishing calibration intervals and/or evaluating measurement reliability over
extended periods of time is summarized in the following table.
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TABLE 6.3
The Calibration Interval Process

Determine end item performance tolerances in terms of acceptable
end item attribute values.

Determine TME parameter tolerances that correspond to
acceptable test process uncertainty.

Determine appropriate measurement reliability targets for TME
parameters.

Collect data on TME parameters to provide visibility of the
uncertainty growth process.

Determine reliability models and coefficients using maximum
likelihood estimation methods.

Identify the TME parameter uncertainty growth process. Select the
appropriate measurement reliability model.

Compute calibration intervals commensurate with appropriate
measurement reliability targets.
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6.3.11 Extended Deployment Considerations

Both TME and end items are subject to uncertainty growth with time. A TME parameter uncer-
tainty grows with time since calibration. End item attribute value uncertainty grows with time
since last tested.

Previous discussions In this section have focused mainly on calibration recall principles, methods
and systems as applied to the problem of controlling uncertainty growth in TME accessible for pe-
rlodic calibration. In this section, the same principles and methods will be applied to the problem
of ensuring measurement uncertainty control for TME and end items deployed on extended mis-
ions. The systems of interest are end items without on-board testing support and TME without
on-board calibration support,

Section 3 discussed metrology requirements for such systems. These requirements relate to de-
signing subsystems to either (1) provide for calibration/test using built-in or on-board references
and/or terrestrial and/or astronomical references or (2) to tolerate extended periods without cali-
bration or testing. Using the measurement reliability modeling methods described in Appendix B,
designs can be evaluated in terms of how well these objectives will be met, The interval analysis
process described in the previous section applies with minor modification, Three cases are of in-
terest and follow below.

6.3.11.1 Case I—TME With Calibration History

The TME parameter or end item attribute under consideration has a history of calibration or
testing acquired over its operational life. In this case, determining the uncertainty growth process
is as described in Section 6.3.10, For end items, the procedure is the same as for TME, except
that test data rather than calibration data are used and the resulting internals are test intervals




rather than calibration intervals, It should be emphasized that for this procedure to be, valid, the
operational parameter or attribute tolerances and the conditions of usage must be the same as
those planned for the mission of interest. If these conditions are not met, then Case 1 becomes
equivalent to Case 2.

6.3.11.2 Case 2—New TME

The TME parameter or end item attribute under consideration is part of a system that has been
developed but that has not been introduced into operation or has not been operational long
enough to accumulate a history of calibration or testing. In this case, complete Steps 1 through 3
of Section 6,3.10. When Step 3 is completed, use empirical uncertainty growth modeling (See be-
low) to determine the measurement uncertainty growth process for the parameter or attribute.

6.3.11.3 Case 3—TME Under Development

The TME parameter or end item attribute is in the design phase of its development, In this case,
the interval analysis process is summarized in Table 6.4 and detailed here as follows.

STEP 1. Determining end item performance requirements in terms of
acceptable end item attribute values.

This involves evaluations of end item utility vs. attribute value for each end item
attribute, Based on these evaluations, meaningful end item attribute uncertainty
limits or performance tolerance limits can be established, End items are to be de-
signed to ensure that attributes will perform within these limits over the duration
of one or both of the following time intervals:

(1) Established testing intervals, This applies to end items supported by on-
board TME.

(2) The mission of interest or some pre-specified portion thereof. This applies to
end items not supported by on-board TME.

STEP 2. Determining TME parameter tolerances that correspond to
acceptable test process uncertainty.

For unsupported on-board TME, design and fabrication functions key on these
limits as parameter uncertainty constraints to be maintained over the duration of
one or both of the following

(1) Established calibration intervals. This applies to TME supported by on-board
(including built-in) standards,

(2) The mission of interest or some pre-specified portion thereof, This applies to
TME not supported by on-board standards,




STEP 3. Determining appropriate measurement reliability targets for ,
end item attributes or TME parameters.

Controlling uncertainty over the course of a mission requires that attributes or pa-
rameters be maintained within tolerance limits at some level of probability com-
mensurate with intended applications, This probability level serves as the mea-
surement reliability target, For on-board TME, the tntended application is testing
of on-board end items. For end items, the application is specified according to
mission requirements.

For extended deployment applications, measurement reliability targets should constitute design
goals for each TME and end item parameter. Ordinarily, this practice is not followed, For example,
a specification for detector sensitivity might read something like

24 hour stability limits: 10.010 Vdc
90 day stability limits: $0.020 Vdc
1 year stability limits: $0.028 Vdc.

Such a specification is incomplete, especially for extended deployment applications, A third quali-
fier is needed. This third qualifier is the probability that the specified tolerance will be maintained
over the intended period. For example, the complete detector specification would look something
like

DURATION TOLERANCE RELIABILITY TARGET
24 hours $0.010 Vdc 0.982
90 days 10.020 Vdc 0,985
1 year 10.028 Vdc 0.940.

Without the third qualifier, it can be readily perceived that any tolerance can be specified for vir-
tually any duration without reservation. For example, the TME contractor or manufacturer could
have claimed a +0.001 Vdc spec for a 24 hour period. This may be applicable in less than one
case out of a thousand, but, if the probability of maintaining this spec for this period is nonzero,
the specification can be upheld. It has been claimed by certain TME manufacturers that the
probability implicit in parameter specifications is understood to be 1.0, i.e., there is no chance for
an out-of-tolerance condition at the end of the specified time, There are two reasons why such
claims are ill-conceived. Nrst, cases of 100% measurement reliability have rarely been observed
in practice. Instead, out-of-tolerance percentages of 30% or higher have been routinely reported
by TME calibrating organizations. Second, stating tolerance limits in such a way that they carry
with them a zero expectation for attribute or parameter out-of-tolerance is suboptimal for mea-
surement uncertainty management. There are three problems related to this concern:

(1) If tolerance limits of= are expected to contain all values of an attribute parameter of in-
terest, then so do tolerance limits of +2X or +3X or .,, The question arises, which should
be used?

(2) It might be argued that the tolerance limits £X are minimum limits that will contain atl
values of the attribute or parameter. A little reflection shows that this is impossible unless
parameters adhere to distributions with abrupt cut-off points. Such distributions are
rarely encountered in practice.




(3) Such all-inclusive tolerances are ordinarily comprised of a curious mix of statistics and
engineering fudge factors. While use of such devices may lead to “comfortable” or conser-
vative equipment tolerances, they provide no statistical information on parameter stabili-
ties. This information is essential for effective measurement decision risk management.

Establishing a reliability target for an end item attribute is equivalent to establishing a maximum
end item attribute uncertainty level corresponding to a minimum acceptable end item average
utility.

STEP 4. Ascertalning the uncertainty growth process for the end item
attributes of TME parameters of Interest.

In the design/development phase of a system’s life cycle, visibility of the uncer-
tainty growth process for each attribute or parameter is obtained in two stages.
The first, measurement reliability network modeling and simulation, applies to the
design phase. The second stage, empirical uncertainty growth modeling, applies to
the pre-production or prototype phase,

Measurement reliability network modeling and simulation — In this stage, the components that
make up the attribute or parameter of interest are integrated in a system configuration model
that permits evaluation of measurement accuracy and stability under the range of component
values and usage conditions anticipated in practice. These values and conditions are simulated
and attribute or parameter responses are noted. Such simulations take into account all factors of
usage, operation, storage, shipping, etc. to which the attribute or parameter of interest may be
subjected.

Development of an attribute or parameter uncertainty growth model in the design phase requires
a detailed specification of component stabilities, circuit topology, operational parameters (ranges
of current, frequency, temperature, vibration, etc.), environmental conditions, usage considera-
tions, and any other data that may impact mechanisms whereby the attribute or parameter may
transition from a nominal to an out-of-tolerance state.

Model development begins with a mathematical statement of the stability of each component im-
pacting the in-tolerance probability for the attribute or parameter of interest, In this application,
the term “stability” refers to a component’s rate of uncertainty growth under specified conditions
of stress. Components with low uncertainty growth rates exhibit high stabilities; components with
high uncertainty growth rates exhibit low stabilities. Component stability models are integrated
into board-level stability models, For complex boards, the stability model may consist of an event
tree network integrating the stabilities of Individual components into a composite description of
the entire board. In cases where boards are relatively simple, the model maybe a component-like
mathematical model (e.g., the mixed exponential model—see Appendix B) that sufficiently repre-
sents the aggregate stability modeling of the constituent components.

Empirical uncertainty growth modeling — This stage involves experimentation with pre-production
units in which usage conditions are emulated. Such experimentation has as its objective obtain-
ing sampled time series data on system attributes or parameters (see Appendtx B) with which to
infer the underlying uncertainty growth processes,

To speed up such a process, functional reliability pre-producUon testing normally employs accel-
erated life techniques to determine anticipated system reliability under conditions of use.
Unfortunately, measurement reliability experiments to infer the growth processes of interest do
not usually benefit from accelerated life testing. This is because, one of the principal “stresses”
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encountered during usage or storage Is time itself, The “response” to this stress of attributes or
parameters with precision tolerances consists of such effects as drift as a result of movement “to-
ward chemical equilibrium, changes in value caused by thermal molecular motion, etc. These ef-
fects cannot always be accelerated in a natural way through the application of intensified con-
trolled stresses.

Moreover, if the set of models chosen as candidates to model an uncertainty growth process has
been carefully arrived at, accelerated life testing may not be needed. It maybe that data taken
over a span of time that is small relative to the intended period of equipment operation will be
sufficient to select the appropriate model and estimate its coeflicients.

STEP 5. Determining reliability models and coefficients.

As stated earlier, measurement reliability can be modeled using mathematical
functions characterized by mathematical forms with appropriate statistical pa-
rameters, During the pre-production stage of the design/development phase, ex-
perimental time series data are sampled (see Empirical Uncertainty Growth
Modeling above,) Values of measurement reliability model parameters can be ob-
tained through maximum likelihood analysis as described in Appendix B. The ex-
perimental time series data can be used to select the function that best represents
the measurement reliability of the attribute or parameter.

During the design stage, measurement reliability model parameters emerge as natural byproducts
of the method of measurement reliability network modeling and simulation, Furthermore, since
such models are constructed from design considerations, there is no need to select the best model
afler the fact, Stability models at the package level and measurement reliability models at the at-
tribute or parameter level of integration are based on the same principles as uncertainty growth
models at the component and board levels but their form may be considerably more complex,
Package and attribute/parameter level models tend to be constructed using event tree and fault
tree approaches in which “what-if” analyses can be applied,

Development of measurement reliability models from component, board and package level models
is an area of current research. Several approaches are suggested by methods used in establishing
functional reliability predictions for hardware. The following are listed to provide an overview of
some of the more conventional of these:

Similar item method — Extrapolation from the known measurement reliability of existing at-

tributes performing similar functions under similar conditions and employing similar design ap-
proaches to those Intended for the attribute or parameter of interest,

Similar circuit method — Extrapolation from the known measurement reliability of existing circuit

configurations and combinations to reliability predictions for circuit configurations and combina-
tions under consideration.

Active element group method — Formation of gross estimates of attribute or parameter measure-
ment reliability based on the number of series active attribute groups required to perform func-

tions. This method provides a feasibility estimate based on design complexity during concept for-
mulation and preliminary design.

Parts count method — Crude estimation of attribute or parameter measurement reliability based
on the number of constituent components. This method is strictly applicable to series configura-
tions only. Non-series elements are handled as “equivalent” series elements, The parts count




method ordinarily assumes that times to out-of-tolerance are exponenttally distributed, with con-
stant failure rates.

Measurement relatability network modeling and simulation develops reliability predictions by sim-
ulating attribute or parameter value operating curves bounded by statistical confidence limits.
Operating curves are simulated on the basis of engineering expectations in response to time and
stress. Statistical confidence limits are simulated from attribute or parameter stability models
that are, in turn, based on package, board and component stability models, The time correspond-
ing to a given operating curve crossing a tolerance limit boundary with a predetermined level of
confidence constitutes a prediction of the time to out-of-tolerance for the attribute or parameter.

Functional reliability network modeling is covered extensively in the reliability literature.
Although many of the same principles apply, measurement reliability modeling is not covered in
any known body of established literature, However, such modeling is often performed by TME de-

signers, as indicated by published equipment specifications found in TME catalogs and user
manuals.

STEP 6. Computing calibration intervals commensurate with appropriate
measurement reliability targets.

This involves setting the modeled measurement reliability function equal to the
measurement reliability target and solving for the interval, This also involves esti-
mating a lower confidence limit for the computed interval as discussed in
Appendix B.

STEP 7. Evacuating computed test or calibration intervals for suitability
for the intended mission.

This involves comparing the estimated calibration interval lower confidence limit
obtained in Step 6 with the period of extended usage called out in the mission
schedule, i.e., with the mission life requirements for the unsupported TME param-
eter or end item attribute under consideration. If the lower confidence limit is
longer than the mission life, the equipment design is acceptable. If not, then the
attribute or parameter is flagged for further work,




STEP 8. Taking corrective action.

In taktng corrective action for an attribute or parameter whose estimated calibra-
tion interval lower confidence Umit is less than the attribute’s mission life, the fol-
lowing alternatives should be considered:

(1) Incorporation of redundant functions. This involves the inclusion of additional
attributes or parameters to back up the problem attribute or parameter, To be ef-
fective, redundant attributes should be independent and should be used in paral-
lel. Under these conditions, if the problem attribute or parameter and its backups
are equivalent with respect to design, fabrication and maintenance, then the total
uncertainty varies as the square root of the number of redundant parallel at-
tributes.

(2) Monitoring of measurement uncertainty using SMPC methods, Incorporate
the methods discussed in Appendix D in ATE, ACE or end item controllers.

(3) Reevaluation of end item performance objectives. If the uncertainty growth of
a given parameter or attribute cannot be held to a level commensurate with mini-
mum end item average utility requirements, and compensating design or other
measures fail to correct this deficiency, it may be prudent to review the perfor-
mance objectives of the end item to determine if these objectives are realistic
within the context of available technology. While this practice is less attractive
than solving the problem, it maybe the only course available,

Establishment of new performance objectives will require revision of relationships
between end item attribute uncertainty and average end item utility, TME parame-
ter uncertainty and end item attribute uncertainty, and TME parameter uncer-
tainty and end item average utility.




TABLE 6.4

Provision for Extended Deployment

Determine end item performance requirements in terms of
acceptable end item attribute values.

A SRR

Determine TME parameter tolerances required to ensure
acceptable test process uncertainty.

Determine appropriate measurement reliability targets for end item
attributes or TME parameters.

Ascertain the uncertainty growth processes for the end item
attributes or TME parameters of interest.

Determine reliability models and coefficients.

Compute test or calibration intervals commensurate with
appropriate measurement reliability targets.

Evaluate computed test or calibration intervals for suitability for the
intended mission.

S AT TR

Take corrective action if hecessary
.Incorporate redundant functions
.Incorporate SMPC methods
.Reevaluate end item performance objectives.

0.4 Statistical Measurement Process Control
(SMPC) Methods

6.4.1 Basic Concepts

Periodic recall and calibration of TME and standards is not practical for space-based applications.
The usual approach for ensuring system measurement integrity in such applications involves the
‘incorporation of redundant capabilities, In applications where this is not time, weight, space, or
cost effective, certain compromises may be considered in on-board system performance objec-
tives. Such compromises would allow widening tolerances to limits that could be expected to con-
tain uncertainty growth over the mission life cycle.

Instances may arise, however, where incorporation of redundant functions is not feasible, and/or
where on-board system performance objectives and corresponding accuracy requirements are
“cast in concrete” and cannot be relaxed, In such instances, measurement assurance can still be
supported through the use of SMPC. SMPC can be employed to monitor the integrity of on-board
system calibration through a “bootstrap” approach, In this approach, on-board TME and calibra-
tion standards are used to check one another within the context of predetermined uncertainty
growth expectations. The process emulates a closed system round robin, conducted periodically,
which updates the prevailing knowledge of on-board equipment accuracies,




In traditional SPC applications, the monitoring of testing or calibrating processes is done by using
process control limits. Process control limits consist of performance specifications expanded to in-
clude measurement process uncertainty contributions, These contributions are arrived at by
multiplying measurement process uncertainties by statistical confidence multipliers, The multi-
pliers are determined in accordance with the degree of confidence [e.g., 95%) desired in monitor-
ing the process,

Measured values are plotted against these control limits. The resulting plot is called a “control
chart.” The occurrence of an “out of control” value on a control chart is taken to signify an out of
control process, possibly an out-of-tolerance measuring device. Since the procedure does not rely
on external TME or standards, the use of statistical measurement process control (SMPC) offers
possibilities for reducing dependence on external calibration in remote environments.

It should be noted that identifying the cause of an out of control measurement often requires hu-

man judgment and analysis. In such an analysis, control charts are studied to detect trends or

anomalies that may shed light on whether the measuring device is measuring accurately, whether

problems have arisen due to ancillary equipment, or whether the measured values are correct but ,
simply lie outside expected limits, With its reliance on manual control chart monitoring, tradi-

tional SPC is difficult to implement in remote environments, If SPC is to be used in these envi-

ronments, what is needed are more revealing and less ambiguous measures of measurement in-

tegrity than out of control occurrences,

Such measures are available through the application of methods that will be collectively referred
to in this publication as SMPC. SMPC can be applied in cases where TME or standards are used
to monitor other TME or standards. In addition to ordinary ground-based testing and calibration
applications, these cases include remote applications in which local monitoring is done in an au-
tomated or remotely controlled closed system, Also included are cases where astronomical or ter-
restrial standards are employed as monitoring references.

With SMPC, as with traditional SPC methods, the results of measurements are used to develop
information regarding the accuracy of the monitoring process, With SMPC, this information takes
the form of in-tolerance probabilities and bias (error or offset) estimates for measuring attributes.
In-tolerance probabilities can be used to indicate instances where monitoring devices should be
either taken out of service or derated. Bias estimates can be used as error correction factors to be
applied to subsequent measurements.

SMPC is described below. Development of this methodology is detailed in Appendix D,

6.4.2 SMPC Methodology

SMPC can be used to estimate in-tolerance probabilities and biases for both TME and standards,
Solving for in-tolerance probability estimates involves finding statistical probabllity density func-
tions (pdfs) for the quantities of interest and calculating the chances that these quantities will lie
within their tolerance limits, Specifically, if fix) represents the pdf for a variable x, and +L and -L
represent its tolerance limits, then the probability that x is in-tolerance is obtained by integrating
JJ over [-L, L)

P=1" seoax .

6. 1)
To illustrate the method, consider the following question, that arose during a proficiency audit:




“We have three instruments with identical tolerances of +10 units. One instrument measures an
unknown quantity as O wunits; the second measures +6 units and the third measures +15 units.
According to the first instrument, the third one is out-of-tolerance. According to the third
instrument, the first one is out-of-tolerance. Which is out-of-tolerance?”

Of course, it is never possible to say with certainty whether a given instrument or another is in-or
out-of-tolerance. Instead, the best we can dois try to evaluate out-of-tolerance or in-tolerance
probabilities. The application of the method to the proficiency audit example follows,

The measurement configuration is shown in Figure 6.3 and tabulated in column 1 of Table 6.5.
For discussion purposes, let instrument 1 act the role of a unit-under-test (UUT) and label its in-
dicated or “declared” value as Y. (the “O” subscript labels the UUT.) Likewise, let instruments 2
and 3 function as TME, label their declared values as Y, and Y,, respectively, (the “ 1” and “2”
subscripts label TME1 and TME2) and define the variables

X1=Yo-Y1=-6,
and

X9 =Yg-Yg=-15,

These quantities can be used to solve for the UUT (Instrument 1) M-tolerance probability estimate,

TME 1
(Instrument 2)
Tolerance =t L

UuT
(Instrument 1)

Y
° UNKNOWN
me—=  TRUE
: o VALUE
Tolerance =t L U

Tolerance =+ L

TME 2
(Instrument 3)

FIGURE 6.3 — Proriciency AUpiT ExampLe, Three INsStruments measure an unknown value.
This value may be external to all three instruments or generated by one or more of them.
Instrument 17s arbitrarily labeled the UUT. Instruments 2 and 3 are employed as TME.




g

TABLE 6.5
Proficiency Audit Results Arranged for SPC Analysis %
UUT=TME 1 UUT=TME 2 wuT=TME3 |
§

I,=10 L =10 Lr=10 ?
L=10 L =10 Lr=10 %
L,=10 L=10 ;=10 %
Yo=0 Yy=6 . Yy'=15 §

Y =6 Y= o Y= 6 %

Y, =15 ¥ =15 Y=o §
X, = -6 X!=6 Xy'= %
X, =15 X;=-9 X7 =15 3

Solving for the In-Tolerance Probability of Instrument 1 — In probability theory, the notation P(Lu!x)
is used 1o denote the probability that an event w will occur, given that an event x has occurred.
For example, w may represent the event that a UUT attribute is in-tolerance and x may represent
the event that we obtained a set of measurements X,, and X,, of the attribute’s value, In this
case, P(W 1 x) is the probability that the UUT attribute is in-tolerance, given that we have obtained
the measurement results Xl and X,.

P(w | x) is a conditional probability. We can also form conditional pdfs. For instance, we can form a
conditional pdf for a UUT attribute error ¢ being present given that we have obtained the quanti-
ties X,and Xz defined above, We write this pdf f(¢]X; ,X2). With f(¢]X; ,X2), we can estimate an
in-tolerance probability for instrument 1 by using it as the pdf in Eq. (6.1.)

Following this procedure yields -an in-tolerance probability estimate of approximately 77%.

Solving for the in-Tolenmce Probabilities of Instruments 2 and 3 — Inreviewing the proficiency au-
dit question, it becomes apparent that there is nothing special about instrument 1 that should
motivate calling it the UUT. Likewise, there is nothing special about instruments 2 and 3 that
should brand them as TME. Alternatively, instrument 2 could have been labeled the UUT and in-
struments 1 and 3 the TME, as in Figure 6.4 and column 2 of Table 6.5, This rearrangement of
labels allows us to calculate the in-tolerance probability for instrument 2 just as we have done for
instrument 1. This involves defining the quantities

X{=Y§-Y{=+6
and

Xb=Y4-Y4=-9,

and forming the pdf f(elX{.X3). Using this pdf in Eq. (6.1) yields an in-tolerance probability es-
timate of 99°A for instrument 2.




uuT
(Instrument 2)

Tolerance = 2L

TME 1
(Instrument 1)

Tolerance =+ L u

Tolerance = 2 L

(Instrument 3)

FIGURE 6.4 — ExcHancing UUT AND TME ROLES. Instruments 1 and 2 of the proficiency au-
dit example exchange_ roles as UUT and TME 1, respectively. This role swapping 1s done fo es-
timate instrument 2 in-tolerance probability.

Similarly, if we compute

X{=Y8-Y'=+9
and

X8=Y§-Y8=1+15,
construct the pdf f(elX{,X§), and use this pdf in Eq. (6,1), we get an in-tolerance probability es-
timate of 69°A for instrument 3.

Solving for instrument Biases —The bias or “error” of an attribute can be found by solving for the
attribute’s expectation value. This expectation value is equal to the attribute’s mean value. The
mean value is obtained by multiplying the attribute’s conditional pdf by the error & and integrat-
ing over all values of g, With this prescription, the biases of instruments 1, 2 and 3 are given by

Instrument 1 bias= [~ e s(elX).Xo)de.

Instrument 2 bias = [_e f(e1X{.X5)de,
and

Instrument 3 bias= [~ _e f(eIX{.X5)de. 6,2)

Using Eq. (6.2), the biases of instruments 1, 2, and 3 are estimated to be -7, -1, and +8, respec-
tively. As will be discussed later, such bias estimates can be employed as measuring attribute
correction factors,
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So, as to the proficiency audit question “who’s out-of-tolerance?”, the answer is that instrument 1
has an estimated bias of -7 and an in-tolerance probability of 77%, instrument 2 has an esti-
mated bias of- 1 and an in-tolerance probability of 99%, and instrument 3 has an estimated bias
of +8 and an in-tolerance probability of 69%. General purpose test equipment is usually managed
to an end-of-period measurement reliability target of 720A. Accordingly, the decision to ensue from
these results would be to submit instrument 3 to a higher level facility for recalibration.

Incidentally, before placing too much stock in the above bias estimates, it is worthwhile to con-
sider that their computed 95°A confidence limits are fairly wide:

Instrument 1: -13.4 to -0,6
Instrument 2: -7.4 to +5.4
Instrument 3: +1.6 to +14.4.

The wide ranges are due to the wide spread of the measured values and to the fact that all in-
struments were considered a priori to be of equal accuracy.

Evaluating Attribute In-Tolerance Probabilities — Consider an attribute of an automated TME or
standard that monitors or checks n independent subject attributes over a span of time that is
short relative to the TMEs deployment cycle, This allows us to regard the TME's measuring at-
tribute as fairly stable over the span of time considered. The result of each check is a pair of de-
clared values: the TME attribute declared value and the subject attribute’s declared value. Either
the pairs of values or their differences are stored and maintained for SMPC analysis,

In the customary view of such checks, the TME is regarded as the automated testing or calibrat-
ing system and the subject attributes are regarded as the UUTs. From the SMPC perspective, any
attribute in the process can be labeled the UUT, with each of the other attributes placed in the
role of TME, Thus the monitoring system’s attribute can be considered a UUT and the workload
attributes can be imagined to be a set of monitoring TME. Given this scheme, label the monitoring
system attribute’s declared value as Yo and the subject attributes’ declared values as Y;,
t1=12,n,

In Ngures 6.3 and 6.4, UUT and TME comparisons are based on the measurement of an underly-
ing value u. Ordinarily, monitoring system checks of subject attributes may occur at different
times and may involve different values, This is not a problem in applying SMPC methodology to
evaluating monitoring system attributes, however, since the quantities of interest are the differ-
ences in declared values X; = Yo - Y;, rather than the declared values themselves. These differ-
ences do not depend on the precise values pertaining at the time of measurement—only that the
same value be measured by both the TME and the UUT.

The combined set of comparisons compiled from test or calibrations of subject attributes yields an
in-tolerance probability estimate for the monitoring attribute. This in-tolerance probability esti-
mate can be used in deciding whether to attempt a recalibration of the attribute against an astro-
nomical or terrestrial reference, to derate its accuracy, or discontinue its use,

Computing Attribute Correction Factors — It was shown earlier that using SMPC can provide esti-
mates of the biases of instrument attributes, These estimates can be employed as attribute error
correction factors.

Suppose, for example, that instrument 1 of the proficiency audit problem is a monitoring system,
and instruments 2 and 3 are subject items. Then, following measurements of the attributes of in-
struments 2 and 3 by the measuring system and application of SMPC, the monitoring system at-
tribute could be assigned a correction factor of/l, where f would be calculated using appropriate




pdfs as shown in Eq. (6.2,) The attribute could be compensated or corrected for “in sofiware” by
automatically subtracting the value 8 from subsequent monitoring system measurements.

Accommodation of Check Standards — If on-site or embedded check standards are used to spot
check monitoring attributes during deployment, in-tolerance probability estimates and bias esti-
mates can be improved considerably, In applying SMPC with a check standard, the check stan-
dard merely takes on the role of an additional subject item, albeit a comparatively accurate one.

By using check standards, not only can the in-tolerance probabilities and biases of the attributes
of monitoring systems be more accurately estimated, but in-tolerance probability and bias esti-
mates can also be determined for the check standards. Since check standards are subject to drift
and fluctuation, using monitoring systems and associated subject items to check for integrity in
this way helps ensure that continuity with the “external universe” is maintained.

Now that we have control data, we can:

e Correct for known errors/drills
« Know when to recalibrate

« Know when the measurement process is out of control-or headed there-and take correc-
tive action,

6.5 Analyzing Measurement Decision Risk

Good measurement system design includes well-defined, and documented measurement assur-
ance techniques to verify the adequacy of the measurement process. Conventional procedures for
measurement system design, selecting equipment and interpreting specifications call out nominal
ratios of accuracy to be maintained between testtng or calibrating systems and units-under-test
or calibration, Use of these nominal ratios while supportable from a measurement assurance
standpoint, are not always best from a cost effectiveness standpoint, Moreover, many instances
arise in which nominal ratios cannot be met because of limits in the state-of-the-art, Also, other
program control variables are used to avoid setting arbitrary levels, such as in-tolerance percent-
age targets, to ensure a level of measurement integrity commensurate with program needs,

The following provides guidelines for using new methods that enable rigorous analyses of accu-
racy ratios, in-tolerance percentage requirements and related parameters. Through use of these
methods, test and calibration capabilities can be tailored to meet mission support requirements,

The mathematical procedures and methods that underlie test and calibration optimization are de-
scribed in Appendix C. This appendix is recommended readtng for technical specialists.

6.5.1 Measurement Decision Risk Analysis-General Concepts

All measurement processes are accompanied by measurement error and uncertainty. Since errors
and uncertainties can never be eliminated, the potential always exists for making incorrect deci-
sions. Although error and uncertainty cannot be eliminated, they can be limited or controlled to
acceptable levels through critical design, testing and calibration.

Until recently, establishing acceptable levels of error and uncertainty has been a simple process
in which nominal standards of high accuracy between verifying and subject units were main-
tained, Historically, relative accuracies have been such that measurement system uncertainties
were required to be ten percent or less of end item or product tolerances, and calibrating system




uncertainties were required to be twenty-five percent or less of the tolerances of subject units. In
the marketplace, and military and aerospace applications, maintenance of these high relative ‘ac-
curacies (or low relative uncertainties) has often proved impossible.

In applications where performance objectives border on measurement accuracy state-of-the-art,
the acceptability of the uncertainty ratio between a measurement system and a subject end item
needs to be evaluated within the context of the application. Also, the acceptability of the uncer-
tainty ratio between a calibrating system and its subject measurement system needs to be de-
termined within the same context.

Maintaining the accuracy (i.e., controlling the uncertainty) of measurement systems is accom-
plished through calibration, and maintaining the accuracy of calibrating systems is accomplished
through still higher level calibration, The chain of calibration and test interfaces comprising the
foundation of accuracy upon which end items are tested and evaluated is called measurement
traceability. With this in mind, the question “why calibrate?” in Section 3.3, becomes rephrased
as ‘why maintain measurement traceability?” The answer to this question is, an accuracy base is
needed to ensure that measurement decision risk is acceptable.

Since the accuracy at any given level of the test and calibration hierarchy is affected by the accu-
racy of supporting levels, the effect of uncertainty at one level on subsequent levels needs to be
accounted for. Moreover, since the primary reason for calibration is the maintenance of an ade-
quate end item test and evaluation accuracy base, accuracy requirements are ultimately deter-
mined by end item performance requirements. That is, measurement system accuracy require-
ments are driven by mission performance requirements, calibration system accuracy require-
ments are driven by measurement system accuracy requtrements, calibration standards accuracy
requirements are driven by calibration system accuracy requirements, and so on.

To illustrate this concept, let's examine the process of acceptance or rejection of a manufactured
part, a cannonball, for instance, based on its physical measurements.

6.5.2 Measurement Decision Risk Analysis—A Simple Example

The ultimate goal of end item testing is ensuring end items will meet or exceed design objectives,
To illustrate how testing and calibration plays a role in attaining this goal, a hypothetical example
is considered, In this example, the end items are taken to be cannonballs and the measurable at-
tribute of interest is cannonball diameter. To avoid getting bogged down in extraneous details, the
example assumes the cannonballs will be fired from a frictionless cannon barrel whose bore di-
ameter never varies from precisely 200 millimeters. Moreover, thermal expansion and friction ef-
fects are ignored.

For this example, the attribute by which cannonball performance is to be evaluated is the ex-
pected range of the idealized cannon. The range of such a cannon is largely governed by the dif-
ference between the cross-sectional area of the cannon bore and the cross-sectional area of the
cannonballs, This leads to a performance curve that is quadratic with respect to cannonball di-
ameter, as shown in Figure 6.5.
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FIGURE 6.5 — END ITEM PERFORMANCE CURVE. End item_(cannonball) maximum performance
1s achieved when the end item measurable attribute is equal to nominal (200 mm.)In the ex-
ample considered, performance (range) drops off quadratically with deviation from norntnal.

The consideration governing requirements regarding ranges attainable by the cannonballs is the
“usefulness” or “utility” of these ranges. This is determined by the cannon’s intended application.
For example, suppose the fielded system of interest is intended to achieve cannonball delivery
within a specified region not covered by other systems, Cannonballs that fall within this region
exhibit maximum utility. Those that fall short of this region exhibit lower utility.

How useful a given end item (cannonball) will be in a given application is described by its uttlity
Junction. The utility characterizing a given end item is determined by the extent to which its ac-
tual performance matches its performance objectives, For this example, cannonballs that reach or
exceed the specified range are characterized by a utility function value of unity. Those that fall
short of but still close to the specified range are characterized by utility function values less than
unity but greater than zero, At some point, the maxtmum attainable cannonball range becomes
“useless. ” Such a range is assigned a utility function value of zero,

A typical utility function is shown in Figure 6.6 where end item performance is given in terms of
cannonball range. Since range can be directly related to cannonball diameter, according to Figure
6,5, utility can also be specified in terms of end item attribute value. This is done in Figure 6.7,
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FIGURE 6.6 — END ITEM UTILITY VS. END ITEM PERFORMANCE. For the cannonball example, a

range of 5000 meters is associated with a utility of 1. AS maximum attainable range de-
creases from 5000 meters, cannonball utility is reduced.
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FIGURE 6.7 — END ITEM UTILITY VS. END ITEM ATTRIBUTE VALUE. A cannonball diameter
(attribute value) of 200 millimeters corresponds to a range (performance) of 5000 meters,
which is associated with a utility of 1. As cannonball diameters decrease from 200 mill -
meters, cannonball utility 1s reduced.

The relationship between the utility function and end item attribute values is particularly useful
for establishing end item tolerances. This is done by identifying an attribute value or range of
values associated with a minimum acceptable end item utility. Minimum acceptable end item
utility Is determined from mission considerations. For example, suppose the scope of misslons in-
tended for our hypothetical cannon requires that utility shall not fall below 0.50, As Figure 6.7
shows, a utility of 0.50 corresponds to a cannonball diameter of 197.5 millimeters, Hence, can-
nonballs with diameters less than 197.5 millimeters are considered to be out-of-tolerance. Also,
since the cannon bore diameter is 200 millimeters, cannonballs whose diameters exceed 200 mil-




limeters will not fit in the cannon barrel, This is equivalent to saying the utility function is equal
to zero if the attribute value is greater than 200 millimeters. Accordingly, the cannonball perfor-
mance tolerance specifications are given as

Upper performance tolerance limit: 200.0 mm
Lower performance tolerance limit: 197.5 mm

Cannonballs produced by a given manufacturer are not all issued with the same diameter.
Because of the vagaries of manufacturing, storage, shipping and handling, cannonballs are pro-
duced with diameters that vary relative to their design target value according to some definable
probability distribution. The closeness of the agreement between actual cannonball diameters and
the design target value is measured in terms of the spread of this distribution.

Some cannonballs will be larger than the design value and some will be smaller. For purposes of
illustration, assume the production of cannonballs larger than the design value and smaller than
the design value are equally likely outcomes. To avoid producing many cannonballs that will be
too large to fit in the cannon barrel, the design target would probably be set at some value less
than 200 millimeters.

Exactly where to set the design value is an involved process that tries to achieve a viable balance
between false reject risk (the probability in-tolerance cannonballs will be rejected by testing) and
false accept risk (the probability out-of-tolerance cannonballs will be accepted by testing,) False
reject risk results in unnecessary rework costs suffered by the manufacturer and false accept risk
results in out-of-tolerance products being delivered to customers; Studies have shown that solv-
ing the problem involves the analysis of alternative approaches, policies and input parameters for
each specific problem of Interest. A methodology is presented in Appendix C.

A useful statistic for evaluating the population of cannonballs delivered by a given manufacturer
is the population’s average utility. Since the utility of an end item depends on its attribute value.
the average utility of a population of end items depends on the distribution of these values, Thus,
a population whose distribution is closely bunched around the end item design value will have a
greater average utility than a population whose distribution is widely spread, Figure 6,8 illus-
trates this idea. In the figure, the population spread is shown in terms of the population standard
deviation or, equivalently, the population uncertainty.
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FIGURE 6.8 — AVERAGE END ITEM UTILITY. The average utility of a population of end iterns
delivered by a given manufacturer is related to the spread of the population attribute values,
This spread is quantified in terms of population uncertainty or standard devtation, AS the
figure shows, a higher standard deviation corresponds to a lower average end item utility.

To ensure average end item utility is at an acceptable level, end item populations are tested before
delivery. Testing is performed using TME to determine whether end item attribute values corre-
spond to acceptable performance. End items that “pass” testtng are shipped with values spread

relative to their design values. The degree of spread reflects the efficacy or accuracy of the testing
process.

Because of unavoidable measurement uncertainties in this process, some percentage of delivered
end items will ordinarily be out-of-tolerance, The relationship between end item population
spread and the percentage of end iterns out-of-tolerance can be inferred from Figure 6.9.
Generally, the greater the spread of the distribution, the higher the out-of-tolerance percentage.
As stated earlier, this spread is described by the end item attribute population standard devia-
tion. For example, Figure 6.9 shows an end item (cannonball) attribute value probability distri-
bution characterized by an attribute value standard deviation of 1.0 millimeter.
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FiGURE 6.9 — END ITem ProsABILITY DENsITY FUNCTION. The probability density function for
a cannonball population whose design value is 199,3 millimeters and whose standard devia-
tion is 1.0 millimeters. The height of the curve indicates the probability a given attribute
value will be found in the population. The shaded area represents the fraction of cannonballs
made with diameters outside the tolerance limits.

How effective testing is in screening out-of-tolerance end items depends on the measurement un-
certainty that characterizes the test process. A test process characterized by extremely low uncer-
tainty will do a better job of screening out-of-tolerance end items than will a process characterized
by a high uncertainty, This is shown in Figure 6,10, Higher end item population out-of-tolerance
percentages are associated with higher end item population uncertainties, The more out-of-toler-
ance end items that slip through the testing process, the higher will be the uncertainty in the at-
tribute values of items delivered to customers. The logical conclusion is that greater test process
uncertainty leads to higher end item attribute uncertainty.

Since test process uncertainty affects the distribution of end item attributes, and the distribution
of end item attributes affects average end item utility, then test process uncertainty affects end
item utility,

Since test process uncertainty is controlled through calibration, the ultimate bene-
fit of calibration is the assurance of end item utility.
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FIGURE 6.10 — END ITEM UNCERTAINTY VS. TEST PROCESS UNCERTAINTY. The out-of-tolerance
probability for a population of end item attributes that have been screened by testing iS gov-
erned in part by the uncertainty of the test process. Test process uncertainty is expressed in
terms of the ratio of the standard deviation of the test process (0 to the end item tolerance
(L.) The figure applies t0 a pre-test population out-of-tolerance proi)ablllty of 5%,

6.5.3 Measurement Decision Risk Analysis—Methodology
Current methodologies for evaluating measurement decision risks examine these risks in the con-

text of test and calibration infrastructures. This enables the building of integrated models that
consider the propagation of uncertainties throughout the infrastructure,

6.5.3.1 The Test and Calibration Support Hierarchy

Test and calibration infrastructures are manifested in test and calibration support hierarchies,
These hierarchies consist of support levels whose uncertainties decrease from level to level, from
end items down through to primary reference standards, Figure 6.11 represents a generic test
and calibration support hierarchy. As Figure 6.11 shows, each level is separated by an interface
through which support requirements are communicated to lower levels and measurement deci-
sions are communicated to higher levels.
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FIGURE 6.11 — THE TesT aND CALIBRATION HIERARCHY. The hierarchy shows the fiow Of sup-
port requirements from the end item level to the primary calibration support level, Immediate
end item support requirements are in terms of the measurement process uncertainty that
can be tolerated during testing. As can be inferred from Figures 6.8 and 6.10. the utility of an
end item population, is affected by this uncertainty, This uncertainty is in turn affected by the
measurement process uncertainty accompanying test system calibration. Also, measurement
process uncertainty at each calibration level in the hierarchy is affected by measurement
process uncertainty at other levels. Because of this, measurement process uncertainties
propagate vertically through the hierarchy to affect end item quality.

6.5.3.2 The Measurement Assurance Cycle

Figure 6.12 represents the overall measurement assurance cycle transacted across each hierar-
chy interface. The sequence depicted applies to cases where units-under-test (UUTs) are shipped
for test or calibration from one hierarchy level to another. In cases where tests or calibrations are
done on site, shipping stresses are not a factor (although some similar stress maybe induced by
routine handling and maintenance.)
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FiURE 6.12 — THE TEST AND CAUBRATION CYCLE. The sequence for schemes in which UUTs
are submitted for test or calibration across hierarchy interfaces. In the case shown, mea-
surement reliability is modeled using the exponential model (see Appendix B.)

The test or calibration interval begins when the UUT is received for use from the supporting or-
ganization. The UUT's measurement reliability here is labeled R, p. Due to measurement process
uncertainties and shipping stresses, Rggp iSnearly always less than 1.0, contrary to popular be-
lief, The quantity R, provides the principal measure of the support quality supplied by the
testing or calibrating organization, This quality can usually be influenced by the maintenance or
adjustment practice adhered to by this organization. After the interval, the UUT is submitted for
retest or recalibration. Here, its measurement reliability is labeled Rggp. The variable Rpep
shows the lowest measurement reliability experienced over the test or calibration interval, Over
the duration of the interval, the UUT exhibits an average measurement reliability, labeled R,..
This average is the technical parameter against which the UUTs utility Is measured during use,

Because of testing and calibration measurement decision uncertainties, some in-tolerance UUT
attributes will be observed as out-of-tolerance (false rejects) and some out-of-tolerance attributes
will be observed as being in-tolerance (false accepts,) False rejects lead to unnecessary rework
and a lowered perception of R p. False accepts raise the risk of using out-of-tolerance parame-

ters during testing or calibration cycle, False accepts lower Rggp and lead to an elevated percep-
tion of Rggp.

6.5.3.3 Test Decision Risk Analysis

The measurement decision risks that accompany all measurement processes is represented in
Figure 6,13, Before testing or calibration, the subject UUT population is characterized by some
percentage of attributes that are out-of-tolerance, Some of these are detected during test or cali-
bration and rejected. Because of measurement process uncertainties, however, some slip through




(false accepts.) Likewise, because of measurement process uncertainties, some in-tolerance at-.
tributes are perceived as out-of-tolerance and are rejected (false rejects.)
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FIGURE 6.13 — Measurement PROCESS RESULTS. Each test or calibration process accepts a
portion of nonconforming items and rejects a ﬁortjon of conforming ones. The greater the
measurement process uncertainty, the greater the risk of making such erroneous decisions.

Measurement process uncertainty is described in terms of several test and calibration support el-
ements that characterize each test and calibration hierarchy interface. These elements are listed
in Table 6,6 and depicted in Figure 6.14. In Figure 6,14, to the left of the UUT SERVICED func-
tion, are those elements that comprise the UUT acceptance criteria and maintenance policy. To
the right of this function, are those elements that govern measurement decision risk, Both sets of
elements interact, For example, if UUT test limits are narrow relative to TME performance limits,
a significant number of false reject and false accept decisions may be made. This would also be
the case if TME AOP measurement reliability were low and/or if measurement process uncertain-
ties were substantial. The relationship of each variable to other variables is described in detail in
Appendix C.




TABLE 6.6

Measurement Decision Risk Elements

]

Risk Element Description

Accuracy Ratio Ratio of the UUT performance tolerance limit
to the TME performance limit uncertainty

BOP Reliability Measurement reliability of an attribute as
received by the user at the beginning of the
test or calibration interval

EOP Reliability Measurement reliability of an attribute at the
end of the usage period

AOP Reliability Measurement reliability averaged over the
usage period from BOP to EOP

Performance Limit Limit which bounds attribute values
corresponding to acceptable performance

Test Limit Limit which defines test or calibration
acceptance criteria for a UUT attribute

Tolerance Limit Tolerance limit outside which an attribute is
considered to require adjustment

Renewal Policy Policy controlling adjustment of tested or
calibrated attributes

It is important to remember that for many of these elements, there are two sets of values; true
values and percetved values. For example, the true EOP measurement reliability of an attribute is
an important variable in estimating measurement decision risk. The observed or perceived EOP
measurement reliability is an important variable in adjusting test or calibration intervals (see
Section 6.) The mathematical relationships between true and perceived values are given in
Appendix C.

The elements that influence what happens between BOP and EOP are shown in Figure 6.15, An
attribute’s EOP measurement reliability is affected by it's BOP value and by it's uncertainty
growth. over the test or calibration interval. This growth depends on the inherent stability of the
attribute, by the conditions of its use and environment, and by the duration of its test or calibra-
tion interval.
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FIGURE 6.14 — ELements OF THE TEST AND CALIBRATION Process. Elements contributing to
measurement process uncertainty are listed to the right of the UUT SERVICED function.
Elements gove_rnln? measurement decisions and maintenance actions are listed to the left,
UUTSs are received for service with an unknown EOP measurement reliability. The lower the
measurement tprocess uncertainty, the closer the perceived EOP measurement reliability is to
the actual or true EOP value. UUTs are returned to users with an unknown BOP measure-
ment reliability. The lower the measurement process uncertainty, the higher the BOP value.
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FIGURE 6.15 — ELEMENTS OF THE UUT USAGE PERIOD. The measurement reliability of each
UUT attribute decreases from it's BOP value to it's EOP value over the duration of the UUT's
test or calibration interval _(Ius_age interval,) The elements contributing to the difference be-
tween BOP and EOP reliabilities are the inherent stability of the attribute, the conditions of
the attribute’s use and its usage environment, and the duration of the usage interval.
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6.6 Managing Measurement Decision Risk -

The management of measurement decision risks is obviously an important element of modern
quality control. This is particularly true in the development and production of systems working at
the forefront of technology. Measurement decision risk management is a specialized discipline
that, like other high technology fields of endeavor, is undergoing development and refinement.

6.6.1 Management of Technical Parameters

The technical parameters important to the management of measurement decision risk are shown
in Table 6.6 Of these, the key elements are performance limit and AOP reliability. Performance
limits provide an indication of the range of attribute values expected in using a test or calibration
system. AOP reliability provides an indication of the average probability that attribute values will
be within these limits, Le., it provides a measure of potential attribute bias or error. Generally,
the higher the AOP reliability, the lower the measurement decision risk (other things being equal,)

Since calibration is done at the end points of equipment usage intervals instead of during use,
AOP measurement reliability is never observed directly. Because AOP reliability is governed by
BOP reliability (the in-tolerance probability at the beginning of the usage period) and EOP relia-
bility [the in-tolerance probability after the period), attaining a given level of AOP reliability calls
for managing EOP and BOP reliabilities.

The BOP reliability of an attribute at one level of the test and calibration hierarchy (see Figure
6.11) is largely determined by the AOP reliability of the supporting attribute or attributes at the
next lowest level. In Figure 6.11, BOP reliability requirements are shown as “support require-
ments,” From Figure 6.11, it can be seen BOP reliability requirements propagate from end item
testing down through to primary standards calibration,

EOP reliability is managed by establishing measurement reliability targets and setting test and
calibration intervals so observed in-tolerance percentages at EOP are equated to these targets,
Because of uncertainties in the measurement process, observed EOP reliabilities are seldom equal
to the actual or “true” EOP reliabilities, A major element of measurement process uncertainty is
the bias or error of the calibrating or testing attribute, Since this error is measured in terms of
AOP reliability, controlling the bias of a testing or calibrating attribute is equivalent to controlling
the attribute’s AOP reliability. The closeness of the agreement between observed and true EOP re-
liabilities at one level of the hierarchy, is governed largely by the AOP reliability of the supporting
attribute(s) at the next lowest level.

The way in which high AOP reliability at a supporting level of the test and calibration hierarchy
promotes high BOP reliability in its subject workload is by controlling the incidence of false ac-
cepts. The way in which high supporting AOP reliability ensures that observed EOP levels are
close to true EOP levels is by controlling both false accepts and false rejects. The latter risk usu-
ally dominates at EOP. False rejects are costly since they lead to unnecessary maintenance, ad-
justment, repair and retest or recalibration.

False rejects also affect operating costs tn another way, Usually, observed EOP levels are normally
lower than true levels. This means test or calibration intervals (keyed to observed in-tolerance
percentages) are usually shorter than they need to be to maintain true EOP reliabilities equal to
EOP targets.




6.6.2  Applicability and Responsibility

Management of measurement decision risk is applicable in all instances where end items are
supported by test and calibration infrastructures, As can be appreciated from the previous sec-
tion and from Appendix C, technical and administrative data need to be supplied by each level of
the support hierarchy. At the end item level, special requirements exist for providing descriptions
of end item performance (utility) in terms of attribute or parameter values, and for providing esti-
mates of the cost consequences of system failure.

6.6.3 Benefits

The benefits to be enjoyed through measurement decision risk management include lower operat-
ing costs and lower costs associated with substandard end item performance, Operating costs in-
clude costs of calibration, testing, unnecessary maintenance, and downtime, Costs associated
with substandard end item performance include warranty or other liability expenses, loss of fu-
ture contract work, loss of corporate reputation, and/or loss of material hardware.

6.6.4 Investment

Benefits from effective measurement decision risk management can be considerable, Gaining
these benefits can, however, call for substantial investments. These include investments in man-
agement energy, data recording and storage, data processing capability and personnel,

The first and often the most critical investment involves making a management commitment to
bring measurement decision risks under control, This involves both grappling with unfamiliar
technical concepts and focusing on measurement integrity (quality) as a major quantifiable cost
driver. However, once it is realized that, unless the type of analysis exemplified in Section 4.10.2
can be routinely performed, end items will be let out the door with unknown levels of utility that
may or may not be acceptable, and test/calibration support costs will persist as operating ex-
penses with unknown return on Investment.

Data requirements for measurement decision risk management may be substantial, Necessary
data elements include several quantities that can only be tracked by maintaining test and cali-
bration recall systems and by comprehensive reporting of technical data, Although exercising the
methodology of Appendix C involves a staggertng number of processing loops and complex math-
ematical operations, the processing capability of current workstation platforms is usually more
than equal to the task,

Until general measurement decision risk management packages become available, much of the
methodology of Appendix C is currently accessible only to highly trained technical experts, Such
personnel need to be conversant with probability and statistics, must be schooled in engineering
concepts and must be comfortable with cost management principles. This level of expertise is
necessary because analysis situations tend to involve individual considerations impossible to fit
with simple analytical recipes or algorithms,

6.6.5 Return on Investment

Until the measurement decision risk management investment is made, there is really no way to
quantify in precise economic terms what the return will be. Until support and acceptance costs
become optimized through the application of measurement decision risk analysis principles, the
cost savings associated with optimization cannot be balanced against the corresponding invest-
ments. This observation notwithstanding, it can be asserted with some confidence that future




needs for measurement decision risk management will exceed those of the present day, As the
costs of technology development and maintenance continue to spiral upward and performance
criteria continue to greater stringency, it maybe assumed the need for effective measurement de-
cision risk management will become an accepted fact of21 st century life,

6.7  Optimizing the Hierarchy—Cost Modeling

Through management of measurement process uncertainties, measurement decision risks are
held to acceptable levels. An “acceptable” level is determined through cost/benefit analysis of op-
erational support costs vs. measurement decision risk consequences, For example, the economic
implications of false rejects are manifested through unnecessary rework and/or retest or recali-
bration, The cost of a false reject is easily expressed in terms of costs arising from unnecessary
effort and costs associated with equipment downtime.

The economics involved in managing false accepts are more subtle, An analysis of economic
tradeoffs involved in false accept management needs a methodology that provides a direct linkage
between the accuracy or “quality” of a given test and calibration infrastructure and the utility
function of the supported end item. The methodology is described in Appendix C.

The procedure to be followed in specifying accuracy and associated support requirements for a
NASA application was illustrated by example in Section 3.2,7. This example will now be reconsid-
ered to show how the various measurement decision risk elements interrelate with one another
and how support costs can be balanced against end item utility requirements,

6.8 Example—The Solar Experiment

In the example of Section 3.2.7, an end item attribute is to be supported in accordance with
nominal NHB 5300.4(1 B) requtrements. These requirements mandate that test process uncer-
tainty shall not exceed ten percent of the tolerance limit of the end item attribute and that cali-
bration process uncertainty shall not exceed twenty-five percent of the tolerance limit of the test
system, The end item attribute is a W detector designed to measure ultraviolet radiation inten-
sity from 1 to 100 mW in the 120 to 400 nanometer range, The measuring system is to be placed
in orbit to achieve accurate readings of solar irradiance over a continuous (24-hour per day) oper-
ational cycle. In solar irradiance measurements, the accuracy attainable using ground based sys-
tems is stated as +30% of reading. Consequently, the utility of the orbiting system is considered
zero if the uncertainty in its measurements is +t30% of reading or more. To justify the expense and
effort involved in placing the system in orbit, it has been determined that the maxmum error that
can be tolerated is + 10% of reading. Therefore, the end item performance limit is set at +10%.

The W detector is only one component of the orbiting system, This means that measurement re-
liability objectives for the W detector attribute must be higher than those of the combined pay-
load system if mission objectives shall be met, A payload measurement reliability objective of 3¢
or 99.73 percent probability of in-tolerance performance was specified in Section 3.2,7. It was
determined that, to meet this objective, each system component would be required to maintain a
minimum measurement reliability of 4 o, or 99.994 percent.

In keeping with NHB 5300,4 (1 B), tolerance limits of* 1% and +0.25% were specified for test sys-
tem and calibration system attributes, respectively. However, neither test system nor calibration
system measurement reliability requirements are called out in the NHB. As a first pass, it was
decided that a 30 (99.73?40) level should be targeted for the test system and a 20 level targeted for




the calibration system. These and other specifications are summarized in Table 6.7, Solar
Experiment Specifications: Table 6.8, Solar Experiment End Item (Prime System) Information:

Table 6.9, Solar Experiment Test System Information: and Table 6.10, Solar Experiment Cal
System Information.

TABLE 6.7

Solar Experiment — Specifications

EOP Measurement
Reliability Target

UV Radiation Detector + 10% of Reading 99.994% In-Tolerance

Parameter Tolerance

Deuterium Lamp 4 1% of Reading 99. 73% In-Tolerance
Deuterium Lamp/ 4 0.25% of Reading 95.45% In-Tolerance
Comparator

Several cost and technical parameters are needed to do a cost/benefit analysis. Of the cost vari-
ables shown, the parameter “cost of prime system failure” is the cost of the-failure of that part of
the mission associated with the Solar Experiment package, The variable “probability of encounter*
refers to the probability the package will be used to make a measurement, Note that no informa-

tion is shown on uncertainties arising from random or environmental effects or resulting from
human error during test and calibration,

Note also the parameters “point at which equipment begins to degrade” (x4 from Table C. 1) and
“point at which complete failure occurs” (x ¢ from Table C. 1.) The parameter xq4 marks the point
where the utility of the end item attribute begins to drop from unity and the parameter x f marks

the point where it reaches zero. These variables are used to mathematically describe the utility of
the end item attribute in terms of the attribute’s value,




TABLE 6.8

Solar Experiment — Prime System Information

Name Solar Experiment

Parameter UV Radiation

Qualifier 1to 100 mW

120 to 400 nM

Adjustment Policy Renew Fail

Reliability Model Exponential

Test Interval 12 months

Observed EOP Reliability 99.994%

Test Point 100.0000 Units: m W
Performance Limit 0.0000 + 10.0000% of Reading
Test Limit 1.0000. Performance Limit
Adjustment Limit 1.0000 . Performance Limit
Repair Limit 3.0000 . Performance Limit
Repair System Equivalent to Test System Accuracies

Test System Performance Limit 0.0000 + 1.0000% of Reading m W

Test System AOP Reliability 99.97%

Cost of Prime System failure $35,000,000
Quantity of Prime Systems

Acquisition cost of one Prime System (parameter) $250,00;
Spares coverage desired 100.00%
Point at which equipment begins to degrade 10.0000m W
Point at which complete failure occurs 30.0000m W
Probability of encounter 100.00%
Probability of successful response 100.00%
Man-hours to test 2
Down-time to test _ 365 days
Cost Eer man-hour for test or adjustment $10,000
Man-hours to” adjust if needed 16
Additional downtime to adjust 3 days
Cost t0 Repair $50,000
Additional downtime to repair O days
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TABLE 6.9

Solar Experiment — Test System Information

Name Deuterium Lamp
Parameter UV Radiation
Qualifier 1to 100 mW

120 to 400 nM
Adjustment Policy Renew Fail
Reliability Model Exponential
Test Interval 4 months
Observed EOP Reliability 99. 730%
Test Point 100.0000 Units: m W
Performance Limit 0.0000 + 1.0000% of Reading
Test Limit 1.0000 . Performance Limit
Adjustment Limit 1.0000 . Performance Limit
Repair Limit 1.0000 . Performance Limit
Repair System Equivalent to Cal System Accuracies
Cal System Performance Limit 0.0000 + 0.2500% of Reading m W
Cal System AOP Reliability 97.33%
Quantity of Test Systems
Acquisition cost of one Test System (parameter) $75,00:
Spares coverage desired 100%
Man-hours’'to calibrate 8
Down-time to calibrate 2 days
Cost per man-hour for calibration or adjustment $50
Man-hours to adjust if needed 0
Additional downtime to adjust O days
Cost to Repair $7,500
Additional downtime to repair 30 days

Accurate testing will lower the probability that degraded or useless performance
will be experienced,

The product of this probability and the cost of useless performance is the “acceptance cost,” A
htgh acceptance cost is associated with poor test and calibration support, Conversely, a low ac-
ceptance cost indicates end items are being placed in service with high in-tolerance probabilities.




TABLE 6.10

Solar Experiment — Cal System information

Name Deuterium Lamp/Comparator
Parameter UV Radiation

Qualifier 1to 100 mW

120 to 400 nM

Adjustment Policy Renew Fail

Reliability Model Exponential

Test Interval 6 months

Observed EOP Reliability 95.00%

Test Point 100.0000 Units: m W
Performance Limit 0.0000 + 0.2500% of Reading
Test Limit 1.0000 . Performance Limit
Adjustment Limit 1.0000 . Performance Limit
Repair Limit 1.0000 . Performance Limit
Cal Sandard Performance Limit 0.0000 + 0.0625% of Reading mW
Cal Standard AOP Reliability $9.86%

Quantity of Cal Systems

Acquisition cost of one Cal System (parameter) $90,00:
Spares coverage desired 100 %
Man-hours to calibrate 16
Down-time to calibrate 4 days

Cost per man-hour for calibration or adjustment $50
Man-hours to adjust if needed 0
Additional downtime to adjust O days

Cost to Repair $9,000
Additional downtime to repair 30 days

The results are shown in Tables 6,11 and 6,12. Table 6,11 shows the technical consequences of
the proposed test and calibration support and Table 6.12 shows the cost consequences . Note that
False Accept and False Reject rates are at 0.00% for the end item, and end item AOP is held at
100.000A over the usage period. Note also the low risk figures for the test and calibration systems
as well, This is because of the high accuracy ratios (4:1), high EOP reliability targets, and ran-
dom, environmental and human factors measurement uncertainties were defined to be zero for
the example.




TABLE 6.11

PRIME SYSTEM
Adjustment Policy
Reliability Model
Test interval
Observed EOP In To!
True EOP InTol
True AOP InTol
BOP In Tol
Performance Limit
Test Limit
Adjustment Limit
False Accept Rate
False Reject Rate
Prime/Test Accuracy Ratio

TEST SYSTEM
Adjustment Policy
Reliability Model
Calibration Interval
Observed EOP in Tol
True EOP InTol .
True AOP In Tof
BOP InTol
Performance Limit
Test Limit
Adjustment Limit
False Accept Rate
False Reject Rate
Test/Cal Accuracy Ratio

CAL SYSTEM
Adjustment Policy
Reliability Model
Calibration Interval
Observed EOP In To/
True EOP inTol
True AOP In Tol
BOP InTol
Performance Limit
Test Limit
Adjustment Limit
False Accept Rate
False Reject Rate

Solar Experiment — Test & Cal Analysis Results

Renew Fail
Exponential
12.0
99.99%
99.99%
100.00%
100.00%
10.0000
10.0000
10.0000
0.00%
0.00%
10.0:1

Renew Fail
Exponential
4.0
99. 73%
99.86%
99.91%
99.96%
1.0000
1.0000
1.0000
0.04%
0.17%
4.0:1

Renew Fail
Exponential
6.0
95.00%
95.27%
97.33%
99.43%
0.2500
0.2500
0.2500
0.57%
0.84%
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TABLE 6.12
Solar Experiment — Cost Analysis Results
SUMMARY COSTS (%)
Annual Test and Cal Cost 46,945
Annual Adjustment Cost 60
Annual Repair Cost 2,040
Annual Support Cost 49,046
Annual Acceptance Cost 3
Total Annual Cost 49,049
Spares Acquisition Cost 259,145

From Table 6.12, the total annual cost associated with test and calibration support of the end
item comes to $49,049. The total acceptance cost is just $3/year, In most applications, a
$35,000,000 cost of end item failure would yield a high acceptance cost; that is, the probability of
accepting nonconforming items during testing is usually high enough to yield an appreciable risk
of system failure. The ludicrously low $3/year cost is resulting from the extraordinarily high ac-
curacy ratio (10: 1) and measurement reliability target (99.994940 EOP) chosen for the end item,
The questton arises on what happens if these targets are relaxed, The benefits of relaxing these
targets would include reduced support costs and an extension of the end item'’s test interval, The
possible negative consequences might include a higher incidence of missed faults (higher false ac-
cept rate) and a correspondingly higher acceptance cost. The spares acquisition cost represents a
one-shot investment needed for spares to cover downtime resulting from testing and calibration.
It can readily be appreciated that this cost variable is sensitive to testing and calibration intervals,

Tables 6.13 and 6,14 show the consequences of moving to a 3¢ (99.73%) reliability target for the
end item attribute, (Only end item results are shown in Table 6.13 since no change was made
that would affect the test and calibration systems,) As expected, maintaining a 99.73% measure-
ment reliability target for the end item attribute instead of a 99.994% target allows lengthening
the attribute’s test interval, The change from 12 months to 627.6 months implies the attribute
can function with a minimum 99.73°A measurement reliability for an essentially indefinite period
(e.g., the mission lifetime.)

But, what of the affect on rntssion objectives? As Table 6,13 shows, the change to a 99,73% relia-
bility target incurs an increase in both the false accept rate and the false reject rate, As shown
previous, an increase in the false reject rate corresponds to increased unnecessary rework costs,
If the test interval is lengthened to the mission lifetime, these costs would be incurred only once,
before deployment, The increase in the false accept rate, however, may jeopardize mission objec-

tives, The severity of these risks can be evaluated by considering their affect on support costs and
acceptance costs, shown in Table 6.14.




TABLE 6.13

Solar Experiment — Analysis Results - Trial 1

PRIME SYSTEM CURRENT PREV1OUS
Adjustment Policy Renew Falil Renew Fall
Reliability Model Exponential Exponential
Test Interval 627.6 12.0
Observed EOP In Tol 99. 73% 99.99%
True EOP In Tol 99. 74% 99.99%
True AOP InTol 99.86% 100.00%
BOP In Tol 99.97% 100.00%
Performance Limit 10.0000 10.0000
Test Limit 10..0000 10.0000
Adjustment Limit 10.0000 10.0000
False Accept Rate 0.03% 0.00%
False Reject Rate 0.04% 0.00%
Prime/Test Accuracy Ratio 10.0:1 10.0:1

TABLE 6.14

Solar Experiment — Cost Analysis Results - Trial 1

SUMMARY COSTS ($) CURRENT PREVIOUS
Annual Test and Cal Cost 7,348 46,945
Annual Adjustment Cost 50 60
Annual Repair Cost 2,040 2,040
Annual Support Cost 9,438 49,046
Annual Acceptance Cost 414 3
Total Annual Cost 9,853 49,049
Spares Acquisition Cost 14,093 259,145

Table 6.14 shows that extending the Solar Experiment attribute’s test interval reduces total an-
nual cost from $49,049 to $9,853 per year. Obviously, the increased false reject rate does not in-
crease unnecessary rework cost to the extent it exceeds cost savings due to reductions in testing
and other service costs. The increased risk of mission failure can be evaluated by considering the
increase in annual acceptance costs. The increase from $3 per year to $414 per year is trivial
(both figures are probably within the “noise level” of the accuracy of our original cost parameter
estimates.) It can be concluded that lowering the attribute’s measurement reliability target (and
significantly extending Its test interval) does not compromise mission objectives, Note also, the
reduction In spares acquisition cost (a one-shot investment,) This is an obvious result of extend-
ing the test interval from 12 months to 627,6 months. What the reduction in spares acquisition
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cost indicates is, with a test interval of 627.6 months, NASA needs to procure only a single unit
as opposed to two units (on-line-plus spare.)

In Stage 7 of initial support planning (see Section 3.2.7), the calibration interval objective for the
deuterium lamp test system was stated to be 6 months. To maintain a 3¢ test system measure-
ment reliability, however, the maximum interval allowable was 4 months. We can now reexamine
this Issue by setting a 6 month calibration interval for the test system. The results are shown tn
Tables 6.15 and 6.16.

TABLE 6.15

Solar Experiment — Analysis Results - Trial 2

PRIME SYSTEM CURRENT PREVIOUS BASELINE
Adjustment Policy Renew Fail Renew Fail Renew Fail
Reliability Model Exponential Exponential Exponential
Test Interval 623.8 627.6 12.0
Observed EOP In Tol 99. 73% 99. 73% 99.99%
True EOP In Tol 99. 74% 99. 74% 99.99%
True AOP In Tol 99.86% 99.86% 100.00%
BOP In Tol 99.97% 99.97% 100.00%
Performance Limit 10.0000 1,0.0000 10.0000
Test Limit 10.0000 10.0000 10.0000
Adjustment Limit 10.0000 10.0000 10.0000
False Accept Rate 0.03% 0.03% 0.00%
False Reject Rate 0.04% 0.04% 0.00%
Prime/Test Accuracy Ratio 10.0:1 10.0:1 10.0:1

TEST SYSTEM
Adjustment Policy Renew Fail Renew Fail  Renew Fail
Reliability Model Exponential Exponential Exponential
Calibration Interval 6.0 4.0 4.0
Observed EOP in Tol 99.63% 99. 73% 99. 73% *
True EOP In Tof 99. 79% 99.86% 99.86%
True AOP In Tol 99.87% 99.91% 99.91%
BOP In Tol 99.94% 99.96% 99.96%
Performance Limit 1.0000 1.0000 1.0000
Test Limit 1.0000 1.0000 1.0000
Adjustment Limit 1.0000 1.0000 1.0000
False Accept Rate 0.06% 0.04% 0.04%
False Reject Rate 0.21% 0.17% 0.77%
Test/Cal Accuracy Ratio 4.0:1 4.0:1 4.0:1

Table 6.15 shows that moving the test system interval from 4 to 6 months does not compromise
end item performance in terms of false accept and false reject risks, This is typical of situations in
which high accuracy ratios are maintained between test systems and end items. Note also that
the end item test interval is not appreciably affected. (The small drop from 627.6 months to 623,8
months is in response to a slight increase in false reject rate,) The results of Table 6.15 are
echoed in Table 6.16 which shows no increase in acceptance cost, i.e., no reduction in mission




reliability resulting from the interval extension, Moreover, since fewer test system calibration ac-
tions are needed per year, total support costs drop from $9.438 to $8,190. Note also the reduction
in spares acquisition cost, indicative of reduced test system downtime resulting from calibration,
Comparison of costs and risks with baseline [original) figures is particularly revealing.

By using the methodology described in Appendix C to analyze end item attribute support re-
quirements in terms of effect on mission performance, it can be seen that considerable savings
may be realized without compromising performance objectives. Note that reliability targets could
be relaxed to the point that false accepts and rejects will result in increased cost rather than de-
creased cost, thus one should maintain caution when relaxing requirements.

Bear in mind that random and human factors uncertainties were not included in
the Solar Experiment example.

TABLE 6.16

Solar Experiment — Cost Analysis Results - Trial 2

SUMMARY COSTS ($) CURRENT PREVIOUS BASELINE
Annual Test and Cal Cost 6,117 7,348 46,945
Annual Adjustment Cost 50 50 60
Annual Repair Cost 2,023 2.040 2.040
Annual Support Cost 8,190 9,438 49,046
Annual Acceptance Cost 414 474 3
Total Annual Cost 8,604 9,853 49,049
Spares Acquisition Cost 12,877 14,093 259,145




The major operational function within the scope of this document is the establishment and
preservation of measurement quality. This section discusses maintenance and repair, as they are
essential to preserving data quality.

7.1 Measurement Quality

The primary requirement is to monitor and evaluate the uncertainties during the measurement
process, The uncertainties must be maintained within a specified range, and exceptions identified
and corrective actions taken.

7.1.1 Establishing Measurement Quality

The total measurement process should be documented so that an objective evaluation can be
achieved to support operational decisions and establish scientific facts,

The uncertainty values should be verified early in the operational phase, This is done by review of
calibrations, observation of data scatter and drifts, analysis of operational and environmental
factors, and cross comparisons with other data sources. All uncertainties from sensor output to
the data reduction equations must be considered, Operator characteristics and environmental
changes are potentially important sources of uncertainty that should be reevaluated. The contri-
butions of elements of the measurement chain to uncertainty are provided by design documenta-
tion. End-to-end checks based on check standards should be implemented, During early opera-

tions, statistically significant samples of all measurement parameters should be gathered to verify
that their bias and precision are within the expected range.

Steps needed to establish measurement process quality at the start of the operations phase are:

(1) Verify that the traceability requirement has been met with the measurement system as
Implemented at the start of operations. Valid calibration is an important part this activity.

(2) Conduct data acquisition activities necessary to define the bias and precision errors,
(3) Combine the bias and precision errors into the uncertainty estimate.

(4) Compare the measured or estimated uncertainty to the tolerance defined or specified by
the design documentation,

(5) If the estimated uncertainty of 4 (above) does not agree with the design tolerance, conduct
the necessary investigation to resolve the difference,

7.1.2 Preserving Measurement Quality

Uncertainty is expected to grow between calibrations (Figure 6.1), and the confidence of the mea-
surement is expected to diminish [Figure 6.2.) The interval between calibrations is an important
tool to control uncertainty. At the least, all test equipment used to perform measurements asso-
ciated with the functions itemized in Section 2.2 must be in a recall system, calibrated at estab-
lished intervals, and labeled to show calibration status and date of next calibration, Specifically,




the reader should review calibration control provisions of NHB 5300.4 (IB), paragraph 1B905;
NHB 5300,4 (1 C), paragraph 1C310(4): and NHB 5300.4 (1 D-2), paragraph 1D507(6.)

Uncertainty and uncertainty growth should be estimated and tracked in time. To control uncer-
tainty growth, calibration and maintenance intervals should be adjusted when necessary and
possible. Out-of-tolerance measurements should be identified and reported to. the user of the
measurement data, Good data is needed to determine if an adjustment is needed.

1
Operations personnel should provide the objective information necessary to adjust

calibration Intervals as a normal part of their activities. |
]

Continuous feedback during operations is essential to preserve the data quality established dur-
ing initial operations, Three periods should be considered:

(1) DESIGN VALIDATION — Early in the operations phase, compare bias and precision values to

the expected performance, If there are deviations, identify the cause and take corrective
action.

(2) MEASUREMENT PROCESS CONTROL — During the entire operations phase, continue to com-
pare bias and precision values to previous values to assure that the measurement process
is operating within the designed uncertainty range. ldentify tendencies to exceed the ac-

ceptable uncertainty range and take corrective actions before out-of-tolerance conditions
happen,

(3) CALIBRATION VERIFICATION — Acquire data before and after components are removed from
the measurement system and sent to a different site for calibration. Assure that the un-
certainty Is within the acceptable range during and after the calibration,

The uncertainty analysis should be documented so that it can be audited if required,

7.1.3 Maintaining Traceability

Measurement traceability may be lost when any part of the system is changed, The most common
changes are from calibration, equipment failures, or software changes,

7.1.3.1 Traceability After Calibration

Calibrations should be verified at two times to maintain traceability

(1) PRE-CALIBRATION — In an as-received condition (before any adjustments are made], a check
calibration should be done and the operations personnel should compare the new cali-
bration data to previous data to verify that the device was within tolerance when received,
If the device was not in calibration, traceability was lost during the period of operation,
This period probably cannot be objectively determined, but it must be estimated for later
assessment of the data quality.

(2) POST-CALIBRATION — If data checks after the calibration show the same bias and uncer-
tainty as before the calibration, traceability after the calibration is established,
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7.1.3.2 Traceability After Equipment Failure

Equipment failure causes significant opportunity for traceability loss, Typically, traceability may
be lost because of substitution of uncalibrated devices (sensors, instruments, etc.) into the mea-
surement system to continue data acquisition operations, During the period that uncalibrated
devices are used, measurement traceability is lost and should be explicitly stated in writing.

Close monitoring of the uncertainty during this period may establish that the measurement pro-
cess was within control, Separation of bias and precision errors, followed by their combination
using the same method as that defined in the uncertainty design, will be necessary. If the bias
and precision errors stay within the range experienced before the equipment failure, the mea-
surement process can be stated to be undisturbed, though documented traceability was lost.

Software changes may be necessary for work-around during equipment failure and such changes
should be documented to minimize traceability loss.

7.1.3.3 Traceability After Software Changes

Section 5.9 discusses software changes, Four activities are recommended during the operations
phase:

(1) Maintain the software test cases under configuration control with no changes,

(2) Acquire data only with the formally approved software version. Conduct debugging and
improvement activities with different versions.

(3) When new versions are ready for use, run the software test cases (with the prescribed
system configuration for their use) to establish that the new version provides the same
data.

(4  Strictly follow established software configuration management rules,

Check standards can be a valuable tool for software test cases. Check standards
can establish end-to-end conditions whose value should fall in a narrow range,
aiding performance verification of a new version,

7.2  Maintenance & Repair

7.2.1 General

Measurement systems maintenance includes technical activities intended to keep instruments,
sensors, transducers and their associated measurement circuitry in satisfactory working condi-
tion and to avoid catastrophic failures, Unlike calibration that is designed to control uncertainty
growth beyond specified limits and to detect insidious failures unnoticeable by an operator, main-
tenance is designed to avoid accelerated wear-out and catastrophic operational failures,

The goal of maintenance is to assure there will be no breakdowns of measurement systems and
that they can continue to operate safely, Typically, the cost to maintain is traded off against the
cost to suffer measurement breakdowns and increased safety risks,




While maintenance can be an independent function, for convenience much of it is done during

calibration. Typically, maintenance intervals are longer than calibration intervals. Therefore,
much maintenance is scheduled to be done for example, at every second or third scheduled cali-
bration.

REF: NHB 4200. IC, 2.209A

A maintenance program shall be prescribed for all installation assigned equipment. The
basic goal of the maintenance program will be to assure maximum readiness of equipment
to perform assigned functions safely and efficiently and at the lowest cost.

Maintenance is a continuing activity that ts done more effectively under uniformly prescribed
procedures and practices and with proper guidelines for the maintenance of each category
of equipment tn use at the installation. For applicable categories of equipment, these guide-
lines will identify maintenance requirements set forth tn appropriate Federal Regulations
and existing NASA Management Directives. When no such guidelines have otherwise been
prescribed, maintenance will generally be done tn accordance with the manufacturer’s or
design agency’s recommended procedures.

7.2.2 Procedures
REF: NHB 4200. 1C, 2.209A

Maintenance programs will include procedures that ensure:
(1) Identification and estimation of maintenance requirements.
(2) Unjform scheduling of maintenance service.
(3) Correction of deficiencies detected during visual inspections of daily operations.

(4) Prompt repair and calibration of equipment in keeping with the user’s performance re-
quirements.

(5) Periodic scheduling of inspections to verify the effectiveness of the maintenance pro-
gram and general operating conditions of equipment.

(6) Use of manufacturer warranties or servicing agreements, as applicable.

(7) Establishment of a technical library of applicable maintenance ‘instructions for each
category of equipment for Which maintenance is provided.

(8) Appropriate preservation and protection of inactive equtpment held tn storage.
(9) Preprinted maintenance check lists when appropriate.

7.2.3 Designs for Maintenance

7.2.3.1 Defining Maintenance Requirements

The requirements for maintenance are usually defined in manufacturer manuals where specific
activities are directed to keep measuring systems operable, Other requirements are derived from
data taken during calibrations, during repairs and from user complaints made to repair/ mainte-
nance personnel, These requirements try to define the circuits, parts, mechanisms and devices
whose faflure could be avoided by detecting diminished capability, fluid loss, dirt and grease ac-
cumulation, environmental stresses, and wear. Also, equipment use should be reviewed to find
out the experience level of users, their opinions regarding its functional reliability, the environ-
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ment in which it is used, and whether maintenance can be divided between the user and the
maintenance facility. Special attentton should be paid to instruments in space applications where
maintenance considered routine on earth will be difficult to impossible to do, The selection of
measuring systems should consider designs that minimize or eliminate maintenance needs.

7.2.3.2 Selection of Maintenance Equipment

Typically, maintenance done during the calibration process uses much of the same equipment
used for calibration, Also, special facilities are needed for cleaning, lubricating, and stress testing
for safety hazards and imminent failures. Some items categorized as measuring devices or acces-
sories may need only maintenance and no calibration. They may also need special tests or actua-
tions to confirm operability of emergency circuits and actuator equipment for more complex tasks
or non-uncertainty related measurement capabilities, such as indications of presence or absence
of signal, pressure, flow, etc.

As with calibration equipment, the site where maintenance is to be done has an influence on the
equipment chosen, Design and selection of the measurement systems should include devices that
need little maintenance or that can be maintained by remote means wherever possible,

7.2.3.3 Designing Maintenance Procedures

Clearly written and logically sequenced procedures are essential to successful maintenance op-
erations. Where these procedures are scheduled in conjunction with calibration operations, they
should be integrated to follow the flow of the calibration process, However, many maintenance
operations should precede calibration to assure functional adequacy of the equipment before
subjecting it to more time-consuming calibrations, Maintenance procedures should have the
same characteristics as those of well-designed calibration procedures, The better, more clearly
written these procedures, the less costly the continued maintenance operations will be. A small
investment in well-prepared procedures will pay large dividends ultimately.

7.2.3.4 Defining Maintenance Servicing Intervals

One of the more difficult design problems is to develop a system that determines the most desir-
able time to do maintenance, Done too frequently, maintenance is a waste of time, or it may even
be deleterious because of possible operator error: done too infrequently and it results in costly
losses to both the measuring instruments and the operations in which they are used. Many own-
ers schedule instrument maintenance at multiples of the calibration interval, This is a practical
approach because typical calibration intervals are shorter than maintenance intervals, As more
knowledge accrues about calibration interval systems and calibration risk targets, basing mainte-
nance Intervals on calibration intervals may not prove to be a safe relationship, Calibration inter-
vals have been getting longer and longer over the past few years because of improved stability of
electronic circuitry, accumulation of statistically significant historical data and improved interval
adjustment systems. This could push maintenance intervals beyond prudent limits; unless cur-
rent practices are changed accordingly.

Maintenance interval analysis should stand alone and be based on mathematical and statistical
correlation of historical failure data that focus on types of maintenance done, Ume between main-
tenance, failled components/parts, and time between failures, From this data, MTBF figures
should be developed for each family or model-numbered measuring instrument, sensor, trans-
ducer, etc. These figures reflect reliability index and should be related to a MTBF target for a




given instrument population, MTBF reliability targets should be established for which proper
maintenance intervals can be designated.

The quality of maintenance intervals and the effectiveness of failure analysis and corrective ac-
tions depends on the adequacy of the acquired data including the design of the interval setting
system, Some additional data may be needed as experience is gained with a particular mainte-
nance program, There is also a significant similarity of data needed to operate either a calibration
interval system or a maintenance interval system, An integration of the two systems should prove
advantageouss.

7.2.4 Repair

Repair becomes necessary when adjustments are inadequate to bring equipment into operational
specifications. After repair, the measurement process should be validated by calibration, and
measurement traceability and uncertainty reestablished, This becomes both very difficult and im-
portant when the repairs and calibration are done in the operational environment,
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81 General

The effective implementation of the techniques and methodologies described in this Publication
should lead to measurement system performance acceptable to the project sponsor and comply
with all standard measurement and calibration requirements, Special circumstances of limits of
the state-of-the-art and practicality may lead to situations where strict compliance with the stan-
dard requirements cannot be met. Any waiver or deviation from contractual requirements usually
requires a written request for approval as defined by contractual documents.

Normally, the standards for waiver/deviation requests require identification of the original re-
quirement(s), reason/justification for the request, and indication of what effect the
waiver/deviation will have on performance, safety, quality, and reliability, plus any other effect on
other elements of the work, The waiver/deviation request will also identify the risk resulting from
the deviation,

The following information is provided as an aid in the preparation, analysis, and review for
waiver/deviation requests of measurement process, metrology, and calibration requirements.

8.2  Classification of Waiver/Deviation Requests

Waiver requests are categorized by the type of documents that invoke the requirements, They can
also be classified according to the criticality and difficulty of the measurement as was done in
Section 3.2,3.

Classifications of criticality of application were defined in Section 3.2,2.1 consistent with NHB
5300.4(1 D-2) and are summarized here as follows:

Category 1 Measurements that affect loss of life or vehicle,
Category 2 Measurements that affect loss of mission,
Category 3 Measurements that affect performance other than Category 1 and Category 2,

A second classification, which is complimentary to the first, involves the degree of difficulty in the
measurement process, especially as it relates to the measurement uncertainties required versus
the capability or state-of-the-art of present measurement systems.

The degree of difficulty of each measurement may directly affect its cost and quality and the
quality of deployed space hardware. In the same manner as the criticality categories, those mea-
surements deserving the most attention can be rated in terms of degrees of difficulty, where that
difficulty may lead to space hardware with lowered performance capability, The degree of difficulty
classifications were developed in Section 3.2.2,2 and are summarized as follows:

Degree A — These are the most difficult or impossible of measurements. They can be
characterized as beyond the current capability of the state-of-the-art, and therefore, force
use of alternative performance parameters that may only marginally characterize system
performance, but can, at least, be measured at reasonable difficulty levels.




Degree B — Measurements that cannot meet the NHB 5300.4(1B) measurement and calf
bratton uncertainty ratio requirements of 10:1 and 4:1.

Degree C — Measurements made in environments hostile to best measuring system per-
formance.

8.3  Independent Risk Assessment of
Waiver/Deviation to Technical Requirements

Good practice indicates that all requests for waiver/deviation be subjected to an independent risk
assessment. For measurement process, metrology, and calibration requirements, a special review
by instrumentation and metrology specialists to identify risk issues and assess their significance
is appropriate, The results of this review should be attached to the waiver request before it is
routed for approval,
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NOTE: The following definitions annotated ww were prepared by a joint working
group consisting of experts appointed by International Bureau of Weights and
Measures (BIPM), International Electrotechnical Commission (IEC), International
Organization for Standardization (1S0), and International Organization of Legal
Metrology (OIML.) The definitions appeared in Metrology, 1984, as the
international vocabulary of Basic and General Termsin Metrology. A few definitions
were updated from the ISO/TAG4/WG3 publication Guide to the Expression of
Uncertainty in Measurement June 1992. Since this publication has modified some
of the terms defined by the earlier VIM work, it is appropriate to modify them
herein, The recent modifications of these terms are annotated vm+ as appropriate.

ACCURACY — The deviation between the result of a measurement and the value of the measur-
and. NoTE — The use of the term precision for accuracy should be avoided.

ACCURACY RATIO — The ratio of performance tolerance limits to measurement uncertainty.

ADJUSTMENT — The operation intended to bring a measuring instrument into a state of perfor-
mance and freedom from bias suitable for its use. vm

ALIAS ERROR — The phenomenon whereby equally spaced sampling of high frequency signals

such as noise appear as lower frequency signals and are thus indistinguishable from data fre-
quencies.

ALIASING — The process whereby two or more frequencies, integral multiples of each other, can-
not be distinguished from each other when sampled in an analog to digital converter

ANALOG TO DIGITAL CONVERTER — A device that samples an analog signal at discrete steady
rate time intervals, converts the sampled data points to a form of binary numbers, and passes the
sampled data to a computer for processing,

APERTURE — The time required for an analog-to-digital converter to establish the digital repre-
sentation of the unknown analog signal,

ATTRIBUTE — A measurable parameter or function,

BANDWIDTH (smaLL sienaL) — The band of frequencies extending from zero upwards to the fre-
quency for which the output amplitude is reduced by no more than 3dB (70.7?40 RMS of the volt-
age ratio) of the amplitude at zero frequency.

BASE UNIT — A unit of measurement of a base quantity in a given system of quantities. wm

BIAS ERROR — The inherent bias (offset) of a measurement process or (of) one of its components,
(Also, see Systematic Error.)

CALIBRATION — The set of operations which establish, under specified conditions, the relation-
ship between values indicated by a measuring Instrument or measuring system, or values repre-
sented by a material measure, and the corresponding known (or accepted) values of a measurand.
NOTE — (1) The result of a calibration permits the estimation of errors of indication of the measur-




ing instrument, measuring system or material measure, or the assignment of values to. marks on
arbitrary scales, (2) A calibration may also determine other metrological properties. (3) The result
of a calibration may be recorded in a document, sometimes called a calibration certificate or a
calibration report. (4) The result of a calibration Is sometimes expressed as a calibration factor, or
as a series of calibration factors in the form of a calibration curve. vm

CALIBRATION FACTOR — The result of a calibration: a term or set of terms by which the instru-
ment values are related to the corresponding known standard values. Sometimes expressed as a
calibration factor, or calibration coefficient, or as a series of calibration factors in the form of a
calibration curve.

CERTIFIED REFERENCE MATERIAL (crRM)— A reference material, one or more of whose property
values are certifled by a technically valid procedure, accompanied by or traceable to a certificate
or other documentation that is issued by a certifying body. NOTE — NIST issues Standard
Reference Material (SRM) which are in effect CRM.

CHARACTERIZATION — The measurement of the typical behavior of instrument properties that
may affect the accuracy or quality of its response or derived data products, The results of a char-
acterization may or may not be directly used in the calibration of the instrument response, but

may be used to determine its performance. (The characterized properties may inherently affect the
calibration of the instrument,)

CHECK STANDARD — A device or procedure with known stable attributes, which is used for re-
peated measurements by the same measurement system for measurement process verification.

COLLECTIVE STANDARD — A set of similar material measures or measuring instruments fulfill-
ing, by their combined use, the role of a standard, NoTE — (1) A collective standard is usually in-
tended to provide a single value of a quantity. (2) The value provided by a collective standard is an
appropriate mean of the values provided by the individual instruments, EXAMPLES: (a) collective
voltage standard consisting of a group of Weston cells; (b) collective standard of luminous inten-
sity consisting of a group of similar incandescent lamps. vm

CONFIDENCE INTERVAL — An interval about the result of a measurement or computation within
which the measurand value is expected to lie, as determined from an uncertainty analysis with a
specified probability.

CONFIDENCE LEVEL — The probability that the confidence interval contains the value of a mea-
surand.

CORRECTED RESULT — The final result of a measurement obtained after having made appropri-
ate adjustments or corrections for all known factors that affect the measurement result, The
closeness of the agreement between the result of a measurement and the value of the measurand.

CORRECTION — The value which, added algebraically to the uncorrected result of a measure-
ment, compensates for an assumed systematic error, NOoTE — (1) The correction is equal to the
assumed systematic error, but of opposite sign. (2) Since the systematic error can not be known
exaclly, the correction value is subject to uncertainty. vm

CORRECTION FACTOR — The numerical factor by which the uncorrected result of a measurement
is multiplied to compensate for an assumed systematic error. NOTE — Since the systematic error
can not be known exactly, the correction factor is subject to uncertainty. vm

CROSS-CALIBRATION — The process of assessing the relative accuracy and precision of response
of two or more instruments. A cross-calibration would provide the calibration and/or correction
factors necessary to intercompare data from different instruments looking at the same target,
Ideally this would be done by simultaneous viewing of the same working standards or target. Any
variations in environmental conditions, calibration procedures, or data correction algorithms be-
tween the instruments must be accounted for in the assessment,
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CROSSTALK — Signal Interference between measurement channels usually due to coupling be-

tween channels in some element, e.g., power supplies, adjacent cables, adjacent telemetry chan-
nels, etc.

DATA PRODUCT — The final processed data sets associated with the various measured and de-
rived parameters that are the object of a specified investigation,

DEAD BAND — The range through which a stimulus can be varied without producing a change in
the response of a measuring instrument, NoTe — The tnherent dead band is sometimes deliber-
ately increased to reduce unwanted change in the response for small changes in the stimulus. wm

DECIMATION — The process of eliminating data frequencies in digital data — used with digital
filtering to minimize aliasing.

DECISION RISK — The probability of making an incorrect decision,

DEGREES-OF-FREEDOM — In statistics, degrees-of-freedom for a computed statistic refers to the
number of free variables which can be chosen. For example, the sample variance statistic (69 is
computed using nobservations and one constant (sample average.) Thus, there are n-1 free vari-
ables and the degrees-of-freedom associated with the statistics are said to be n-I.

DERIVED UNITS — Derived units expressed algebraically in terms of base units (of a system of
measure) by the mathematical symbols of multiplication and division, Because the system is co-
herent, the product or quotient of any two quantities is the unit of the resulting quantity.

DETECTOR — A device or substance that indicates the presence of a particular quantity without
necessarily providing its value, NoTE — In some cases, an indication maybe produced only when
the value of the quantity reaches a given threshold, ExAMPLE: (a) halogen leak detector: (b) tem-
perature-sensitive paint.

DIFFERENTIAL METHOD OF MEASUREMENT — A method of measurement in which the measur-
and is replaced by, a quantity of the same kind, of known value only slightly different from the
value of the measurand, and in which the difference between the two values is measured.
EXAMPLE: measurement of the diameter of a piston by means of gauge blocks and a comparator,
viv)

DIRECT METHOD OF MEASUREMENT —A method of measurement in which the value of measur-
and is obtained directly, rather than by measurement of other quantities functionally related to
the measurand. NOTE — The method of measurement remains direct even ff it is necessary to
make supplementary measurement to determine the values of influence quantities in order to
make corresponding corrections. EXAMPLES: a) measurement of a length using a graduated rule:
(b) measurement of a mass using an equal-arm balance, vm

DISCRIMINATION — (See Resolution)

DISCRIMINATION THRESHOLD — The smallest change in a stimulus that produces a perceptible
change in the response of a measuring instrument, NOTE — The discrimination threshold may de-
pend on, for example, noise (internal or external), friction, damping, inertia, quantization.
ExAMPLE: if the smallest change in load that produces a perceptible displacement of the pointer of
a balance is 90 mg, then the discrimination threshold of the balance is 90 mg. vm

DRIFT — The slow variation with time of a metrological characteristic of a measuring instrument,
M)

DYNAMIC MEASUREMENT — The determination of the instantaneous value of a quantity and,
where appropriate, its variation with time, NOTE — The qualifier “dynamic” applies to the measur-
and and not to the method of measurement, wvm




ENGINEERING UNITS — A set of defined units commonly used by an engineer tn a specific field to

express a measurand. The units should be expressed in terms of a recognized system of units,
preferably S1 units.

ENVIRONMENTAL VARIABLES — Variable physical properties in the environment of the instru-
ment or target (such as temperature, particulate and electromagnetic radiation, vacuum, and vi-
bration) that may affect the result of a measurement. NOTE — The sensor does not measure an
environmental variable: it measures an observable.

ERROR — The difference between the result of a measurement and the value of the measurand.

ERROR MODEL — A mathematical model of the measurement chain in which all potential error

sources are identified, quantified, and combined such that a meaningful esttmate of measurement
uncertainty can be determined.

GROUP STANDARD SERIES OF STANDARDS — A set of standards of specially chosen values that
individually or in suitable combination reproduce a series of values of a unit over a given range.
EXAMPLES: (a) set of weights: (b) set of hydrometers covering contiguous ranges of density. v

HYSTERESIS — The property of a measuring instrument whereby its response to a given stimulus
depends on the sequence of preceding stimuli. NOTE —Although hysteresis is normally considered
in relation to the measurand, it may also be considered in relation to influence quantities. wvm

INDICATING (measuring) INSTRUMENT —A measuring instrument that displays the value of a
measurand or a related value, EXAMPLES: (a) analog voltmeter; (b) digital voltmeter; (c) micrometer.
ving

INDICATING DEVICE — For a measuring instrument, the set of components that displays the
value of a measurand or a related value. NoTE — (1) Term may include the indicating means or
setting device of a material measure, for example, of a signal generator. (2) An analog indicating
device provides an analog indication; a digital indicating device provides a digital indication, (3) A
form of presentation of the indication either by means of a digital indication in which the least
significant digit moves continuously thus permitting interpolation, or by means of a digital indi-
cation supplemented by a scale and index, is called a semi-digital indication, (4) The English term
readout device is used as a general descriptor of the means whereby the response of a measuring
instrument is made available. vmm

INDICATION (OF A MEASURING INSTRUMENT) — The value Of a measurand provided by a measuring in-
strument, NOTE — (1) The indication is expressed in units of the measurand, regardless of the
units marked on the scale, What appears on the scale (sometimes called direct indication, direct
reading or scale value) has to be multiplied by the instrument constant to provide the indication,
(2) For a material measure, the indication is nominal or marked value. (3) The meaning of the
term “indication” is sometimes extended to cover what is recovered by a recording instrument, or
the measurement signal within a measuring system, wm

INDIRECT METHOD OF MEASUREMENT —A method of measurement in which the value of a mea-
surand is obtained by measurement of other quantities functionally related to the measurand.
EXAMPLES: (a) measurement of a pressure by measurement of the height of a column of liquid: (b)
measurement of a temperature using a resistance thermometer. vwm

INFLUENCE QUANTITY — A quantity that is not the subject of the measurement but which influ-
ences the value of the measurand or the indication of the measuring instrument. EXAMPLES: [a)
ambient temperature; (b) frequency of an alternating measured voltage. vm

INSTRUMENT CONSTANT — The coefliclent by which adirect indication must be multiplied to ob-
tain the indication of a measuring instrument. Note — (1) A measuring instrument in which the
direct indication is equal to the value of the measurand has an instrument constant of 1, (2)
Multirange measuring instruments with a single scale have several instrument constants that




correspond, for example, to different positions of a selector mechanism. (3) For some measuring
instruments, the transformation from direct indication to indication maybe more complex than a
simple multiplication by an instrument constant. vm

INTEGRATING (Measuring) INSTRUMENT — A measuring instrument that determines the value of a

measurand by integrating a quantity with respect to another quantity. EXAMPLE: electrical energy
meter. v

INTERNATIONAL STANDARD — A standard recognized by an international agreement to serve in-
ternationally as the basis for fixing the value of all other standards of the quantity concerned. v

INTRINSIC ERROR (OF A MEASURING INSTRUMENT) — Errors inherent in a measuring instrument.
EXAMPLE: non-linearity, gain accuracy, noise, offset, hysteresis.

LIMITING CONDITIONS — The extreme conditions that a measuring instrument can withstand
without damage and without degradation of' its metrological characteristics when it is subse-
quently operated under its rated operattng conditions. NoTE — (1) The limiting conditions for stor-
age, transport and operating may be different. (2) The limiting conditions generally specify limiting
values of the measurand and of the influence quantities. v

LINEARITY — (See Non-Linearity.)

MATHEMATICAL MODEL — A mathematical description of a system relating inputs to outputs,
Should be of sufficient detail to provide inputs to system analysis studies such as performance
prediction, uncertainty (or error) modeling, and isolation of failure or degradation mechanisms, or
environmental limitations.

MEASURAND — A specific quantity subjected to measurement. NoTE — As appropriate, this may
be the measured quantity or the quantity to be measured. vm.

MEASUREMENT — The set of operations having the object of determining the value of a quantity.
(ViM)

MEASUREMENT ASSURANCE PROGRAM (war) —A program applying specified (quality) principles
to a measurement process, A MAP establishes and maintains a system of procedures intended to
yield calibrations and measurements with verified limits of uncertainty based on feedback of
achieved calibration of measurement results, Achieved results are observed systematically and
used to eliminate sources of unacceptable uncertainty,

MEASUREMENT PROCEDURE — The set of theoretical and practical operations, in detailed terms,
involved in the performance of measurements accordtng to a given method. wvm

MEASUREMENT PROCESS — All the information, equipment and operations relevant to a given
measurement. NoTE — This concept embraces all aspects relating to the performance and quality
of the measurement; it includes the principle, method, procedure, values of the influence quanti-
ties, the measurement standards, and operations. The front-end analysis, measurement system,
and operations combine into the measurement process. v+

MEASUREMENT RELIABILITY — The probability that a measurement attribute (parameter) of an
item of equipment is in conformance with performance specifications,

MEASUREMENT SIGNAL —A representation of a measurand within a measuring system. NO7E -
The input to a measuring system maybe called the stimulus: the output signal maybe called the
response. o

MEASUREMENT STANDARD — A material measure, measuring instrument or system intended to
define, realize, conserve or reproduce a unit or one or more known values of a quantity in order to
transmit them to other measuring instruments by comparison, EXAMPLES: (a) 1 kg mass standard:




(b) standard gauge block: (c) 100Q standard resistor; (d) saturated Weston standard cell; (e) stan-
dard ammeter; (f) cesium atomic frequency standard. vm

MEASUREMENT SYSTEM — One or more measurement devices and any other necessary system
elements interconnected to perform a complete measurement from the first operation to the re-
sult. NOTE — A measurement system can be divided into general functional groupings, each of
which consists of one or more specific functional steps or basic elements,

MEASURING CHAIN — A series of elements of a measuring instrument or system which consti-
tutes the path of the measurement signal from the Input to the output, EXAMPLE: an electroacous-
tic measuring chain comprising a microphone, attenuator, filter, amplifier and voltmeter. vm

METROLOGY — The field of knowledge concerned with measurement, NOTE — Metrology includes
all aspects both theoretical and practical with reference to measurements, whatever their level of
accuracy, and in whatever fields of science or technology they occur. vm

NATIONAL STANDARD — A standard recognized by an official national decision as the basis for
fixing the value, in a country, of all other standards of the quantity concerned. The national stan-
dard in a country is often a primary standard, In the United States, national standards are estab-
lished, maintained, and disseminated by NISI’, v+

NOMINAL VALUE — A value used to designate a characteristic of a device or to give a guide to its
intended use, NOTE — The nominal value maybe a rounded value of the value of the characteristic
concerned and is often an approximate value of the quantity realized by a standard, exampLE’ the
value marked on a standard resistor, mm

NON-LINEARITY — The deviation of the output of a device from a straight line where the straight
line may be defined using end-points, terminal points, or best fit,

NOISE — Any extraneous or unwanted signal which contaminates the measurement, For mea-
surement systems, noise consists of random noise (thermal processes within conductors), white
noise (thermal processes within resistors), and systematic noise (line frequency, power supply
ripple, EMI, etc.)

PRECISION — The closeness of the agreement between the results of successive measurements of
the same measurand carried out subject to all of the following conditions: (a) the same method of
measurement: (b) the same observer: (c) the same sensor; (d) the same measuring instrument: (e)
the same location; (f) the same conditions of use: (g) repetition over a short period of time. The
confidence with which a measurement can be repeated under controlled conditions, or the confl-
dence that two different measurement systems or techniques can yield the same result, NOTE -
The use of the term precision for accuracy should be avoided. (See Repeatability.)

PRIMARY STANDARD — A standard that has the highest metrological qualities in a specified field.
NOTE — The concept of primary standard is equally valid for base units and for derived units. wm

PRINCIPLE OF MEASUREMENT — The scientific basis of a method of measurement. EXAMPLES: a)
the thermoelectric effect applied to the measurement of temperature; (b) the Josephson effect
applied to the measurement of voltage: (c) the Doppler effect applied to the measurement of veloc-
ity. v

PROBABILITY DENSITY FUNCTION (pdf) — A mathematical expression describing the functional
relationship between a specific value of an attribute or variable and the probability of obtaining
that value.

RANDOM ERROR — A component of the error of measurement which, in the course of a number
of measurements of the same measurand, varies in an unpredictable way. NoTE — It s not possi-
ble to correct for random error. v




RATED OPERATING CONDITIONS — Conditions of use giving the ranges of the measurand and of
the influence quantities, and other important requirements, for which the metrological character-
istics of a measuring instrument are intended to lie within specified limits. NoTE — The rated op-
erating conditions generally specify rated values of the measurand and of the influence quantities.
viM)

RECORDING (measuring) INSTRUMENT — A measuring instrument that provides a record
(permanent or semi-permanent) of the value of a measurand or a related value, NOTE - (1) The
record may be analog (continuous or discontinuous line) or digital. (2) Values of more than one,
quantity may be recorded simultaneously. (3) A recording measuring instrument may also incor-
porate an indicating device. EXAMPLES: a) barograph; (b) thermoluminescent dosimeter, v

REFERENCE CONDITIONS — Conditions of use for a measuring instrument prescribed for perfor-
mance testing, or to ensure valid intercomparison of results of measurements, NOTE — The refer-
ence conditions generally specify reference values or reference ranges for the influence quantities
affecting the measuring instrument. vm)

REFERENCE MATERIAL — A material or substance one or more properties of which are suffi-
clently well established to be used for the calibration of an apparatus, the assessment of a mea-
surement method, or for assigning values to materials. v

REFERENCE STANDARD — A standard, generally of the highest metrological quality available at a
given location, from which measurements made at that location are derived. wmm

RELATIVE ERROR — The absolute error of measurement divided by the value of the measurand.

REPEATABILITY — The ability of an instrument to give under specific conditions of use, closely
similar responses for repeated applications of the same stimulus. NoTe — Repeatability may be
expressed quantitatively in terms of the dispersion of the results, (See Precision,)

REPRODUCIBILITY (OF MEASUREMENTS) — The closeness of the agreement between the results of
measurements of the same measurand, where the individual measurements are carried out
changing conditions such as: (a) method of measurement; (b) observer; (C) measuring instrument;
(d) location: (e) conditions of use: (fy time. vm (See Precision.)

REQUIREMENT — A translation of the needs into a set of individual quantified or descriptive
specification for the characteristics of an entity in order to enable its realization and examination,

RESOLUTION (oF AN INDICATING DEVICE) —A quantitative expression of the ability of an indicating de-
vice to distinguish meaningfully between closely adjacent values of the quantity indicated. mm

RESPONSE CHARACTERISTIC — For defined conditions, the relationship between a stimulus and
the corresponding response, NOTE — (1) The relationship may be based on theoretical or experi-
mental considerations: it may be expressed in the form of an algebraic equation, a numerical
table or a graph, (2) When the stimulus varies as a function of time, one form of the response
characteristic is the transfer function (the Laplace transform of the response divided by that of
the stimulus.) v

RESPONSE TIME — The time interval between the instant when a stimulus is subjected to a spec-
ified abrupt change and the instant when the response reaches and remains within specified lim-
its of its final steady value. v

RESULT OF A MEASUREMENT — The value of a measurand obtained by measurement, NOTE--(1)
When the term “result of a measurement” is used, it should be made clear whether it refers to: (a)
the indication: (b) the uncorrected result; (c) the corrected result; and whether averaging over sev-
eral observations is involved, (2) A complete statement of the result of a measurement includes
information about the uncertainty of measurement and about the values of appropriate influence
quantities. vim




SAMPLING INTERVAL — The size of the samples used to measure something: Le., in imaging.
sampling refers to pixel size. In spectroscopy, sampling refers to the smallest spectral bandwidth
used to measure something. Sampling, as applied to an analog to digital converter, is the process
which transforms a continuous function into a series of discreet values at a linear time rate,

SCALE — An ordered set of scale marks, together with any associated numbering, forming a part
of an indicating device. mm

SECONDARY STANDARD — A standard whose value is fixed by comparison with a primary stan-
dard. vm

SENSITIVITY — The change in the response of a measuring instrument divided by the correspond-
ing change in the stimulus. Note — Sensitivity may depend on the value of the stimulus. v -

SENSOR — A device that responds to either the absolute value or change in a physical stimulus
(heat, light, sound, magnetism, pressure, or particular motion) and produces a corresponding
signal. A sensor can be an entire instrument or the part of it that measures a phenomenon,

S1 PREFIXES — Used as prefixes in combination with the terms and symbols of S1 units to form
decimal multiples and submultiple of those units.

SI UNITS — The coherent system of units adopted and recommended by the General Conference
on Weights and Measures (CGPM.) mm

SPAN — The modulus of the difference between the two limits of a nominal range of a measuring
instrument. EXAMPLE: nominal range -10 V to +1 O V. span 20 V. mm

SPECIFIED MEASURING RANGE / SPECIFIED WORKING RANGE — The set of values of a measur-
and for which the error of a measuring instrument is intended to lie within specified limits. NOTE
- The upper and lower limits of the specified measuring range are sometimes called the maxi-
mum capacity and minimum capacity respectively, v

STABILITY — The ability of a measuring instrument to maintain its metrological characteristics
within specified limits, NoTE - It Is usual to consider stability with respect to time, Where stability
with respect to another quantity is considered, this should be stated explicitly.

STANDARD DEVIATION — For a series of n measurements of the same measurand, the parameter
S characterizing the dispersion of the results and given by the formula:

L 2
2 (%~ %)
=
n-1
xi being the result of the ith measurement and x being the arithmetic mean of the » results
considered. NoTE - (1) The experimental standard deviation should not be confused with the
population standard deviation ¢ of a population of size N and of mean m, given by the formula:

N
3 (x-m)?
o= ——

(2) Considering the series of n measurements as a sample of a population, sis an estimate of the
population standard deviation. (3) The expression —;provides an-estimate of the standard devia-
tion of the arithmetic mean % with respect to the mi¥n mof the overall population, The expression
" is called the experimental standard deviation of the mean. vm
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STATIC MEASUREMENT — The measurement of a quantity whose value can be considered con-
stant for the duration of the measurement. Note — The qualifier “static” applies to the measurand
and not to the method of measurement. v

SYSTEMATIC ERROR — A component of the error of measurement which, in the course of a num-
ber of measurements of the same measurand, remains constant or varies in a predictable way.
NoTE — (1) Systematic errors and their causes maybe known or unknown, (2) For a measuring
instrument, see “Bias Error. “vm

TOLERANCE — The total permissible variation of a quantity from a designated value.

TRACEABILITY — The property of a result of a measurement whereby it can be related to appro-
priate standards, generally international or national standards, through an unbroken chain of
comparisons. wm

TRANSDUCER — A measuring device that provides an output quantity having a given relationship
to the input quantity, ExampLES: a) thermocouple; (b) current transformer: (c) electro-pneumatic
converter, v

TRANSFER STANDARD — A standard used as an intermediacy to compare standards, material
measures or measuring instruments. NoTE — When the comparison device is not strictly a stan-
dard, the term transfer device should be used. EXAMPLE: adjustable calipers used to intercompare
end standards. mm

TRANSPARENCY — The ability of a measuring instrument not to affect the value of the measur-
and.

TRAVELING STANDARD — A standard, sometimes of special construction, intended for transport
between different locations. Also known as a “Iransport Standard.” vm+

TRUE VALUE (OF A QUANTITY) —The value that characterizes a quantity perfectly defined, in the
conditions that exist when that quantity is considered. NoTe — The true value of a quantity is an
ideal concept and, In general, cannot be known exactly. Indeed, quantum effects may preclude
the existence of a unique true value. v

UNCERTAINTY (OF MEASUREMENT) — A parameter, associated with the result of a measurement, that
characterizes the dispersion of the values that could reasonably be attributed to the measurand.
NoTES — 1, The parameter may be, for example, a standard deviation (or a given multiple of it), or
the width of a confidence interval. 2, Uncertainty of measurement comprises, in general, man
components. Some of these components may be evaluated from the statistical distribution of the
results of series of measurements and can be characterized by experimental standard deviations,
The other components, which also can be characterized by standard deviations, are evaluated
from assumed probability distributions based on experience or other information. .

UNIT (OF MEASUREMENT) — A specific quantity, adopted by convention, used to quantitatively express
values that have the same dimension. wvm

VALUE (OF A QUANTITY) — The expression of a quantity in terms of a number and an appropriate
unit of measurement, EXAMPLE: 5,3 m; 12 kg: -40° C. vim

VARIANCE — (See Standard Deviation.)

VERIFICATION — Tests and analyses to be performed during the design, development, assembly,
integration, and operational phases of a measurement system to assure that specified require-
ments have been met, Includes all sub-system and system tests done at the functional level.

WORKING STANDARD — A standard which, Usually calibrated against a reference standard, Is
used routinely to calibrate or check material measures or measuring instruments. v




ZERO (OF A MEASURING INSTRUMENT) — The direct indication of a measuring instrument when the in-
strument is in use with zero value of the measurand, any auxiliary power supply required to op-
crate the instrument being switchéd on. NOTE — ( 1) This term is commonly called electrical zero in
the case of a measuring instrument having an electrical auxiliary power supply. (2) The term me-
chanical zero is often used when the instrument is not in use and any auxiliary power supply is
switched off. (3) The mechanical zero may possibly not coincide with the electrical zero: in some
types of instrument the mechanical zero may be indeterminate. (4) There is also a “data zero”,
e.g.: digital telemetry systems typically operate between O-5 V, with “data zero” at 2,5 V. vm +




This appendix provides the mathematical and detailed algorithmic methodology needed to imple-
ment optimal calibration interval analysis systems as described in Section 6. In developing the
concepts behind the methodology, many topics discussed in Section 6 will be reiterated, It Is rec-
ommended that Section 6 be read as preparation for the material presented here.

sections B. 1 and B.2 review the concepts of measurement reliability and optimal calibration in-
tervals. Section B.3 discusses the consequences of suboptimal systems, and Sectton B.4 reviews
the process by which TME parameters transition from in-tolerance to out-of-tolerance, Calibration
interval analysis methodology development begins with Section B. 5 in which the out-of-tolerance
or uncertainty growth time series is described, Sections B.6 through B.8 provide methods and
tools for analyzing the time series, section B.9 describes mathematical functions that have proved
useful in modeling both parameter and instrument measurement reliabilities, Section B. 10 dis-
cusses calibration interval determination, and Section B. 11 through B. 15 gives techniques for
identifying statistical outliers and for preprocessing calibration history data, Section B, 16 sum-
marizes the approach for determining measurement relatability targets,

B.1  Measurement Reliability

For a given TME parameter population, the out-of-tolerance probability can be measured in terms
of the percentage of observations on the parameter that correspond to out-of-tolerance conditions.
A population may be identified at several levels. Those pertinent to calibration interval analysis
are (1) all observations taken on serial numbered items of a given model number or other homo-
geneous grouping (2) all observations taken on model numbers within an instrument class (3) all
observations on a TME parameter of a model number or other homogeneous grouping, and (4) all
observations on a TME parameter of a serial number item, It is shown in Section B. 5 that the
fraction of observations on a given TME parameter classified as out-of-tolerance at calibration is a
maximum likelihood estimate (MLE) of the out-of-tolerance probability for the parameter. Since
out-of-tolerance probability is a measure of test process uncertainty, the percentage of calibra-
tions that yield out-of-tolerance observations is a measure of this uncertainty. This leads to using
“percent observed out-of-tolerance” as a variable by which test process uncertainty can be moni-
tored.

The complement of percent observed out-of-tolerance is the percent observed in-tolerance. The lat -
ter is called measurement reliability.

MEASUREMENT RELIABILITY — The probability that a measurement attribute
(parameter) of an item of equipment is in conformance with performance specifi-
cations.




An effective approach to determining and implementing a limit on test process uncertainty in-
volves defining a minimum measurement reliability target for TME parameters. In practice, many
organizations have found it expedient to manage measurement reliability at the Instrument in-
stead of the parameter level. In these cases, an item of TME is considered out-of-tolerance if one
or more of its parameters is found out-of-tolerance. Variations on this theme are possible.
Determination of measurement reliability targets is discussed in Section B. 15.

B.2 Optimal Calibration Intervals

Reiterating from Section 6, calibration intervals are considered optimal if the following criteria are
met:

CRITERIA 1 — Measurement reliability targets correspond to measurement uncer-
tainties commensurate with measurement decision risk control requirements.

End item utility is compromised and operating costs are increased if incorrect decisions are made
during testing, The risk of making these decisions is controlled through holding TME uncertain-
ties to acceptable levels, This is done by maintaining minimum levels of TME measurement relia-
bility. These minimum levels are the measurement reliability targets,

CRITERIA 2 — Calibration intervals lead to observed measurement reliabilities in
close agreement with measurement reliability targets,

Since measurement uncertainty grows with time since calibration (see Figures 6,1 and 6.2), mea-
surement reliability decreases with time since calibration, The particular time since calibration
that corresponds to the established measurement reliability target is the desired calibration inter-
val,

In some applications, periodic TME recalibration are not possible (as with TME on board deep
space probes) or are not economically feasible (as with TME on board orbiting satellites.) In these
cases, TME measurement uncertainty is controlled by designing the TME and ancillary equipment
or software to maintain a measurement reliability level which will not fall below the minimum ac-
ceptable reliability target for the duration of the mission,

CRITERIA 3 — Calibration intervals are determined cost-effectively. |

A goal of any calibration interval analysis system should be that the cost per interval is held to
the lowest level needed to meet measurement reliability targets, This can be done if calibration in-
tervals are determined with least human intervention and manual processing, i.e., if the interval
analysis task is automated, Minimizing human intervention also calls for some development and
implementation of decision algorithms. Full application of advanced artificial intelligence (Al)
methods and tools is not ordinarily needed, Simple variables can often be used to approximate
human decision processes. This expedient is used, for example, in sections B.8 and B. 14,

CRITERIA 4 — Calibration intervals are arrived at in the shortest possible time.




Several interval assignment approaches are currently in use, but most cannot meet Criteria 3 and
4. Some can meet these criteria; but need long periods of time to do so. Usually, the time needed
for these approaches to arrive at intervals consistent with measurement reliability targets is more
than the operational lifetimeé of the TME of interest, In contrast, methodologies that embody the
principles described in this appendix provide the capabilities to meet all the above criteria in an
expedient manner,

Besides meeting these criteria, systems that incorporate these principles should permit easy and
expedient implementation of analysis results, The results should be comprehensive, informative
and unambiguous. Mechanisms should be in place to either couple the analysis results directly to
an associated equipment control system or to transfer information to the equipment control sys-
tem with least restatement or translation.

To appreciate better the need for optimal calibration intervals, it is worth considering the conse-
quences of suboptimal systems,

B.3 Consequences of Suboptimal Systems

One deficiency of suboptimal calibration recall systems is failure to develop an appropriate TME
measurement reliability target or targets. Low levels of TME measurement reliability lead to low
levels of average end item utility, But, setting measurement reliability targets higher than neces-
sary results in more frequent calibration than is necessary. This translates to operating costs
higher than is justifiable because of end item utility requirements, Excessive measurement relia-
bility targets lead to inappropriately short intervals as shown below.

Assume the uncertainty growth behavior of a TME population of interest can be modeled by the
exponential reliability model described in Section B.9:

R(t) = Rge™* |

where R(t) represents measurement reliability and t represents time since calibration, The param-
eters Rp and A are, respectively, the measurement reliability at t = O and the TME out-of-toler-
ance rate, From the expression for R(t), the calibration interval, I, is determined according to

(pt\Rt

where In(s) is the natural log function, and R* is the reliability target. (Note: R* should always be
less than or equal to Ry, o -In(R*/Ry) should always be greater than or equal to zero, Instances
have been found where the reverse has been true, In these cases, the interval recall systems had
been trying to find the interval which would lead to a higher in-tolerance percentage after the in-
terval than was in effect at the beginning!) From this expression, note that the higher the relia-
bility target, the shorter the calibration interval, Figure B. 1 shows this relationship for the expo-
nential model. Similar results apply to uncertainty growth processes represented by other relia-
bility models.

As Figure B. 1 shows, calibration interval can be a sensitive function of measurement reliability
target, As mentioned earlier, setting an inappropriate measurement reliability target can lead to
undesirable cost outcomes or compromised end item utility.
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FIGURE B.1 — CaLIBRATIoN INTERVAL VS. MeasureME NT REUSABILITY TARGET. The relation-
ship between calibration interval and reliability target for a TME represented by the expo-
nential reliability model with Ry = 1.0.

Another facet of suboptimal systems is the Inability to find intervals that yield actual measure-

ment reliabilities that agree with established reliability targets, Many systems use sliding internal |
or other heuristic adjustment schemes that “react” to calibration results on a calibration-by-cali-
bration basis. Such systems are typically incompatible with adjusting intervals to meet in-toler- .
ante percentage goals, Some systems do try to adjust intervals to established reliability targets.
However, as mentioned earlier, they do not arrive at intervals commensurate with these targets |
within the lifetimes of the TME under consideration. The consequences of suboptimality in cali-

bration interval determination are summarized in Table B. 1.

TABLE B.1

Consequences of Suboptimal Calibration Interval Systems
CONDITION CONSEQUENCE

Reliability target too high Calibration intervals too short
Reliability target too low Calibration intervals too long
Calibration intervals too short Calibration costs too high

Excessive TME downtime
Unnecessary drain on personnel
Logistics/supply problems

Calibration intervals too long Unsatisfactory end item utility
Slow Convergence to optimal Intervals too long or short for too
intervals long a time

Unnecessa effort expended in
adjusting inzervals




B.4 The Out-of-Tolerance Process

As discussed earlier, periodic TME calibration is motivated because the confidence that TME are
operating in an in-tolerance state diminishes with time since last calibrated. This presupposes
there is some process by which TME parameters transition from in-tolerance to out-of-tolerance.

Because of the complexity of many instrument types, deterministic descriptions of this process
are often difficult or impossible to achieve. This is not to say that the behavior of an individual in-
strument cannot in principle be described in terms of physical laws with predictions of specific
times of occurrence for out-of-tolerance conditions. Such descriptions are typically beyond the
scope of equipment management programs. Such descriptions become overwhelmingly impracti-
cal when attempted for populations of instruments subject to diverse conditions of handling, en-
vironment and application.

Variations in these conditions are usually unpredictable. ‘Ibis argues for descriptions of the in-
tolerance to out-of-tolerance process for populations of like instruments to be probabilistic instead
of deterministic in nature, This point is further supported by the notion, commonly accepted that
each individual instrument is characterized by random inherent differences that arise from the
vagaries of fabrication and later repair and maintenance, Besides, for TME managed via an
equipment pool system, the conditions of handling, environment and application may switch from
instrument to instrument in a random way because of the stochastic character of equipment de-
mand and availability in such systems. So, the failure of an Individual TME parameter to meet a
set of performance criteria (i.e., the occurrence of an out-of-tolerance state) is considered a ran-
dom phenomenon that is, one that can be described in terms of probabilistic laws.

B.5 The Out-of-Tolerance Time Series

As shown earlier, a high degree of confidence can be placed on the supposition that equipment
parameters are in conformance with performance specifications immediately following calibration,
As the equipment experiences random stresses resulting from use and storage, this confidence
decreases. Unless later recalibration is done, the confidence in the in-tolerance status
(measurement reliability) of equipment parameters decreases monotonically with time, A random
phenomenon that arises through a process that is developing in time in a manner described by
probabilistic laws is called a stochastic process.

One method of analysis by which stochastic processes of this kind are described is time series
analysts. A time series is a set of observations arranged chronologically, Suppose that the obser-
vations comprising the time series are made over an interval T and that the observations have
been taken at random times t. Let the observed value of the variable of interest at time t be la-
beled R(t). The set of observations {R(t)t e T) is then a time series that is a realization of the
stochastic process {R(t),te T). Time series analysis is used to infer from the observed time series
the probability law of the stochastic process, Time series analysis is applied to the calibration in-
terval analysis problem by letting R(t) represent observed measurement reliability corresponding
to a calibration interval of duratton t.

R(t) 1s obtained by taking a sample of in- or out-of-tolerance observations recorded after an inter-
val t has passed since the previous calibrations. Representing in-tolerance observations in the
sample by g(t) and the size of the sample by n{t), the observed measurement reliability associated
with a calibration interval of duration t is given by R(t)= g(t)/ n(t). The observed measurement re-
liability, based on a sample of observations, represents the theoretical or expected measurement
reliability R(f) in the sense that




RU= im 0 o
n(t)—e n(t)

R(t) = E[R(t)] ,

where the function E{) represents the statistical expectation value for the argument x.

B.6 Analyzing the Time Series

Discovering and describing the stochastic process underlying the in-tolerance to out-of-tolerance
transit-ton, can be thought of as an experiment in which, samples are taken of times between cali-
bration paired with calibration results. To provide visibility of the time series, the samples are ar-
ranged chronologically, Data can be either measured values (variables data) or observed condi-
tions (in- or out-of-tolerances.] The former lead to models of the stochastic process that describe
TME parameter value vs. time, The latter lead directly to probability models that represent
parameter measurement reliability. Nearly all existing calibration recall systems use only
attributes data. The treatment in this publication is applicable primarily to attributes data
systems. Variables data systems are on tap for future development,

With attributes data systems, the observed time series looks something ltke Table B.2. Note that
the sampled data are grouped in two-week sampling intervals, and that these sampling intervals
are not spaced regularly apart, This reflects the ‘take It where you can find it* aspect of gathering
data in enough quantity to infer with reasonable confidence the out-of-tolerance stochastic pro-
cess, Ordinarily, data are too sparse at the individual TME serial number level to permit this in-
ference, Consequently, serial number histories are accumulated typically in homogeneous group-
ings, usually at the manufacturer/model level. More will be said on this later.

Note that, for many TME management programs, the conditions “in-tolerance” and “out-of-toler-
ance” are applied at the instrument instead of the parameter level. Although this leads to less ac-
curate calibration interval deterrrdnations than can be obtained by tracking at the parameter
level, the practice is still workable. The observed time series is constructed the same way, despite
the level of refinement of data collection, A plot of the observed time series of Table B.2 is shown
in Figure B.2,

TABLE B.2

Typical Out-of-Tolerance Time Series
WEEKS NUMBER NUMBER OBSERVED
BETWEEN ~ CALIBRATIONS IN-TOLERANCES MEASUREMENT

CALIBRATIONS  RECORDED OBSERVED RELIABILITY
t n(t) &(t) R(t)
24 4" 4 10000
5-7 6 5 0.8333
8-10 1“4 9 0. 6429
11-13 13 8 0. 6154
1921 22 12 0.5455
26-28 49 20 0. 4082
37-40 18 9 0.5000
48-51 6 2 0,3333
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FIGURE B.2 — HYPOTHETICAL OBSERVED TIME Series. The observed measurement reliabilities
for the time series tabulated in Table B.2.

To analyze the time series, a model is assumed for the stochastic process. The model is a mathe-
matical function characterized by coefficients. The functional form is spectfied while the coeffi-
cients are estimated based on the observed time series {R(t), t T). The problem of determining the
probability law for the stochastic process becomes the problem of selecting the correct functional
form for the time series and estimating its coeflicients.

The method used to estimate the coefficients involves choosing a functional form that yields a
probability law enabling meaningful predictions of measurement reliability as a function of time,
By Its nature, the probability law cannot precisely predict the times at which transitions to out-of-
tolerance happen, Instead, the probability law predicts measurement reliability expectation val-
ues, given the times since calibration. The analysis tries to find a predictor R(t, 8) = R(t) + €, where
the random variable € satisfies E(c) = O. It can be shown that the method of maximum likelihood
parameter estimation provides consistent parameter estimates for such predictors,

B.7 Measurement Reliability Modeling

Whether the application is ensuring measurement integrity for periodically calibrated TME or de-
signing TME to tolerate extended periods between calibration, the uncertainty growth stochastic
process is described in terms of mathematical models, characterized by two features: (1) a func-
tional form, and (2) a set of numerical coefficients. Figure B.3 models the time series of Table 13,2
with an exponential reliability model characterized by the coeffiients RO = 1 and 1 = 0.03.
Determining which mathematical form is proper for a given stochastic process and what values
will be assigned the coefficients are discussed in the following sections.
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Ficure B.3 — OUT-OF-TOLERANCE STOCHASTIC PROCESS MODEL The stochastic process UN-
derlying the time series is modeled by an exponential function of the form R(t) = Roe ,

B.7.1 The Likelihood Function

Maximum likelihood coefficient estimation for measurement reliability modeling is somewhat dif-
ferent from coefficient estimation used in “classical” reliability modeling. In the latter, each item
in a sample from a population of items is monitored at specified intervals, spaced closely enough
together to enable the detection and recording of accurate times to faflure. These failure times are
inserted Into a likelihood function incorporating the probability density function of the model of
the failure time distribution given by

1 d R(t.0)

J(t.6)= "Rt 6) dt

(8.1)

where § is a vector whose components are the coefficients used to characterize the reliability
model, To construct the likelihood function, let the observed times to failure be labeled
41=1,2,3,.-0 ,m, and let the times for which sample members were observed to be operational
and in-tolerance be labeled tj, j=m +1, m +2, m+3, - ,n. Then the likelihood function is given

by
m n R
L=[]7wé JT Ret.) B.2)
=m

Using Eq. (B.2), the coefficients of the model are obtained by differentiating the log of L with re-
spect to each component of §, setting the derivatives equal to zero and solving for the component
values,

In measurement reliability modeling, constructing a likelihood function using recorded failure
times is not feasible. This is because “failures” are defined as out-of-tolerance conditions whose
precise, actual times of occurrence are undetected and unrecorded. At first sight, the fact that the
failure times are unknown might be viewed as an insurmountable obstacle, However, owing to the
binary character of the dependent variable, the in- or out-of-tolerance observations on each in-




strument serviced constitute independent Bernoulli trials. This fact suggests a procedure for de-
velopment of the likelihood function.

First, subdivide the domain of observations on the instrument type under study into sampling
intervals so each sampling interval contains some minimum number of observations. Let n be the
total number of observations and let k, n; and b; denote sampling intervals, the sample size of the
ith sample and fatlures observed in the ith sample, t =1,2,3,000.,k. Let t; represent the interval (time)
corresponding to the #th sampling Interval, and let P(t) be the probability that an out-of-tolerance
will have happened by time t. The reliability at time t; is R(t) = 1- P{t;) Let yy be the jth observa-
tion for the ith sample of size n; such that yy =1 for an observed in- tolerance and yy=0 for an

observed out-of-tolerance. Using the density function for Bernoulli trials, the likelihood function
for the #th sample is written

i (1-y;)
Ly = [JR@ ¥ 1 -RN 0 (B.3)
Jj=1

Maximizing this function with respect to R{t) yields the maximum likelihood binomial estimate for’
the sample in-tolerance probability:

ny
:—:2 J/ni . (B.4 a)

The number observed in-tolerance for the ith sample, g, is given by

g 2% - (B.4b)
J=1
that yields, after combining with Eq. (B.4a)
Ri=gi/ng . (B.4¢)

The estimates , R, =1,2,3,-+,k are binomtally distributed random variables with means R(t) and
variances R(t)[ 1- R(t)l/n;.

Having identified the distribution of the observed variables, the probability law of the stochastic
process {R{t),t« T) can be determined from the likelihood function

H[E:“)Ro.-.e)gf LRy, o8 (B-5)

= O

B.7.2  Steepest Descent Solutions

For measurement reliability modeling, the functional forms are usually nonlinear with respect to
the coefliclents that characterize them, Consequently, closed form solutions for the components
of § are not obtainable generally, and iterative techniques are used, To introduce these tech-
niques, a simplified method is discussed. Practitioners of numerical modeling will recognize the
method as a variation of the method of steepest descent,




B.7.2.1 The Normal Equations

If the theoretical reliability model R(t.) is characterized by an m-component coefficient vector,
then maximizing Iog(L) in Eq. (B.5) leads to m simultaneous equations

ny[R(t) - Rit;.6)) { IR(t.6) _ g
ZR(t( N -R(t;, o)]k 0, ) 0, v=123, --,m, (B.6)

that are nonlinear in the coefficients. These m simultaneous equations are solved for 8 using an
iterative process.

B.7.2.2 The lterative Process

As shown above, iterative methods are used to solve for the vector 6. The method of steepest de-
scent begins by “linearizing” the nonlinear model R(t, 6). This linearization is done by expanding
R(t.6) in a first order Taylor series approximation at each iteration:

m o o
Rty .67 = Rt 6+ Y[ 2R@A ) Gra -y (8.7)
vain 90 s P

where r+ 1 and r refer to the (r+ 1)th and rth iterations. Substitution of Eq. (B. 7) in (B.6) gives

k
Y W/ IR(t) - R(t;.6"ID}, ZW'Z Wl -0 v=128..m (B.8)
i=1

where the quantities W;" and D, are defined by

ny

WirE — — - — (B~9)
R(t;,6")N - R(t;,67) ¢
and
_{ dR(t;.0)
D,rf(_%i_]_ B 8.10)
v 6=0"

Eqs (B.8) can be written in matricial form by defining the vectors R, R" and b’, with components
= R(t). R} = R(;,6"), and bT, = 65! - 8", respectively, and the matrices W and D with elements
D(rv- and Wj= W

®)TW'®R - R)= 0T wD'b’, (Boll)
where the T superscript indicates transposition, Solving Eq. (B. 11) for br gives

br - [(Dr)TWrDr]_l(Dr )Twr(ﬁ _ ﬁr)
- ér+1 —8
and

ér_-.-l - ér + [(Dr)TWrDr]—l(Dr )Twr(ﬁ - ﬁr) . (B, 12)

The iterations begin (r=0) with initial estimates for the parameter vector components and continue
until some desired convergence is reached, i.e., until §*1 = §".




If the process converges, the first order expansion in Eq. (B.7) becomes increasingly appropriate.
Problems arise when the process diverges, as will often happen if the first parameter estimates
are substantially dissimilar to the maximum likelihood values. To alleviate such problems, a
modification of the steepest descent method described above has been developed by Hartley. This
modification is the subject of the next section,

B.7.2.3 Modified Gauss-Newton Iteration Method

The method of getting consistent maximum likelihood coefficient estimates is a modified Gauss-
Newton technique, The approach uses Eq. (B, 12) but departs from the method described in the
previous section by introducing a convergence coefficient 2« [0,1] as follows:

6l = g" 4 ab". (B.13)

The modified technique uses the integral of Eq. (6) with respect to 6} given by

Gr+1y= k rms _ P AT 12
QU.6™™) Y WIIR() - R(t.67)
i=1

= (R-RNTWR - R) (B. 14)

The method assumes a parabolic @(t, §"*') in the coefficient subspace that comprises the domain
corresponding to the local minimum of Q(t, 8 *!). Different values of 4 are used to search the pa-
rameter space in a grid in an attempt to find a region that contains this local minimum. Hartley
uses the values =0, 1/2 and to get

_1 . 1_ Oo)-0m
'1“,““‘2 ‘4*9(1) - 29(%) + Q0)"

where

Q) = Q(t,8" + Ab"). (B.16)

Hartley's method works by using the value A, for 42 in Eq. (B. 13.) Unfortunately, for muiltipa-
rameter reliability models, Hartley’s method as described does not invariably lead to convergence,

To ensure convergence, a stepwise Gauss-Jordan pivot is used, With this technique, 4,4, is
sought in a restricted neighborhood of the coeflicient subspace. The restriction comes from user
defined bounds on the components of the coefficient vector. The upshot of the restriction is that
pivots that correspond to boundary violations are undone. In this way, if the iteration begins to
diverge, the process is partly “reversed” until things are back on track. For a detailed treatment of
the technique, the reader is referred to the benchmark article by Jennrich and Sampson,

B.8 Reliability Model Selection

A variety of mathematical reliability models have been identified as useful for modeling the out-of-
tolerance process. In instances where the process can be inferred from an engineering analysis of
TME design, component stabilities and user applications, determination of the appropriate relia-
bility model is straightforward, Usually, such analyses are unavailable, In these cases, the appro-
priate reliability model may be determined by comparing a set of viable “candidate” models
against the observed out-of-tolerance time series and choosing the model that best fits the data,
Unfortunately, the reliability model selection procedures found in the literature consist primarily




of tests of applicabllity instead of correctness. Moreover, such tests usually are applied to the co-
efficient vector instead of the model itself. These tests are useful only if the model is correct in the
first place.

The recommended method is one that tries to test for correctness of the model. The method is
based on the practice of determining whether R{t, 6) follows the observed data well enough to be
useful as a predictive tool,

The subject of stochastic model evaluation is an area of current research. Some promising varia-
tions of the use of the Wald statistic have recently come to light, Adaptation of these to the prob-
lem at hand may happen within the next few years, If so, it maybe wise to consider replacing the
evaluation tools to be discussed below. These tools, based on defensible statistical concepts, have
been refined as a result of considerable trial and error of a heuristic nature.

B.8.1 Reliability Model Confidence Testing

The recommended test of R(t,) is a confidence test constructed using statistical machinery de-
veloped for treating N(g,69 random variables. The validity of this approach derives from the ap-
proximately similar statistical properties of binomial and normal distributions.

The test compares the error that arises from the disagreement between R(t.8) and R(t,),
i=1,2,3, - .k called the “lack of fit" error, with the error due to the inherent scatter of the ob-
served data around the sampled points, called the ‘pure error.”

Pure error will be considered first. Returning to the Bernoulli variables deflned in Sectlon B.7. 1,
the dispersion for the ith sampling interval is given by 2y - R))%.1=1,2,3, - k, where

= R({;). The total dispersion of the observed data, called the pure error sum of Squares (ESS)is
accordlngly given by

-k ny o
ESS=Y 3 (yy-Ry)*. (B.17)
i=1j=1

Since yg =Yy, and Eyy =m Ry, Eq. (17) can be written
J

k
ESS= Znt Rt(l—Rl) ) (B, 18)
i=1

ESS has n-k degrees of freedom, where n = En;. The pure error, denoted by sg. is estimated by
.92 1 k - o .
sg=—"2YmR(I-Ry) . (B. 19)
n'kt=1

The estimate s is a random variable, which when multiplied by its degrees of freedom, behaves
about like a 22 random variable.
The dispersion of the model is given by the root sum of squares

n -
RSS= Y, i(yy ~Ry)2, (B.20)
i=1J=1

which can be written as




.k
RSS= Y nl(R;-Ry)2 + Ry (1-Ry)). © o (B.21)
i=1

RSS, which has n-m degrees of freedom, contains the dispersion resulting from lack of fit, with

the pure error scatter. The dispersion owed to lack of fit, called the lack of fit sum of squares (LSS)
is obtained by subtracting ESS from RSS:

k
LSS= > m(Ry-Ry)2. (B.22)
i=1

LSS has (n-m) - (n-k) = k-m degrees of freedom, and the error owed to lack of fit, is given by “

k
9 1 - - .9
S87 = R;-R)“. B.23
L k_mg,l"t( i—R¢) (B.23)

The variable sf, when multiplied by its deqrees of freedom, follows a proximate y2 distribu-
tion. This fact, with the ¥2 nature of (n-Ksg, and because sE and sblzae independently dis-
tributed, means that the random variable F = s}/s}, follows an approximate F-distribution with
v = k- mand vy = n - kdegrees of freedom,

If the lack of fit is large relative to the inherent scatter in the data (i.e., if sf is Iarge relative to
sE) then the model is considered inappropriate, Since an increased s% relative to s results in
an increased value for F, the variable F provides a measure of the appropriateness of the reliabil-
ity model. Thus, the model can be rejected on the basis of an F-test to decide whether the com-
puted F exceeds some critical value, corresponding to a predetermined rejection confidence level,
e.g., 0.95.

B.8.2 Model Selection Criteria

Once the rejection confidence levels for the trial failure models are computed, it remains to pick
the one that best describes the stochastic process (R(t).t € T}. First, it might be assumed the best
model In this regard would be the one with the lowest rejection confidence level. However, while
rejection confidence level should surely be an important factor in the selection process, there are
other considerations. One such consideration is the interval corresponding to a predicted reliabil-
ity equal to the target reliability.

For example, suppose two models have nearly equal rejection confidences but one yields an inter-
val several times longer than the interval recommended by the other. The question in this in-
stance is: How does one choose between two, apparently equally “good,” reliability models with
markedly dissimilar behavior? Unless the TME whose reliability is being modeled supports a
critical end item application, economic considerations dictate that the model corresponding to the
longest interval should be chosen.

An economic criterion in conjunction with a rejection confidence criterion may be viewed as an
Improvement over using a rejection criterion alone. Yet, there still exists a lingering suspicion that
perhaps some additional criterion be applied, This arises because, in the above example for in-
stance, two seemingly appropriate models yield very different reliability predictions. If this is the
case, which one is really the correct model? For that matter, is either one the correct model? The
recommended method resolves the issue democratically by having each model in the list of candi-
date models “vote” for its choice of a recommended interval. In this approach, the recommended




intervals are grouped according to similarity. Intervals corresponding to the largest group tend to
be regarded as more representative of the stochastic process,

So, there are three criteria for reliability model selection. Using these criteria, a figure of merit G
is computed for each trial reliability model:

Ng ,1/4 '
G==L4f*, (B.24)

where C is the rejection confidence for the model, Ng is the size of the group that the model be-
longs to and tg is obtained from

R(tg.0)=1-R*, (B.25)
where R* is the reliability target,

The figure of merit in Eq. (B.24) is not derived from any established decision theory paradigms,
Instead, it has emerged from experimentation with actual cases and is recommended for imple-
mentation on the basis that it yields decisions in good agreement with decisions made by expert
analysts.

B.8.3 Variance in the Reliability Model

In many applications (e.g., dog or gem identification), the variance of R(t,6) for any given t is a
quantity of interest, This variance maybe computed in a manner similar to that used in linear re-
gression analysis by imagining that the coeflicient vector of the next-to-last iteration is a fixed
quantity, independent of the k-tuple of the time series {R(t),t € T), but still very close to the final
coefliclent vector. While this construct seems superficially questionable, it leads to results at least
qualitatively valid,

Extension of linear regression methods to the nonlinear maximum likelihood estimation problem
at hand gives the variance-covariance matrix for b as

vib") = (") Tw'p !, (B.26)

Then, defining a vector d with components

dy(t.8") {M) W= 128.m, (B.27)
af)u d=d"

permits the variance in R(t,8) for any t to be written
varlR(t,6") = aT(t.6 o HT wSnf11ae,e7) . (B.28)
In practice, the coefficient vector corresponding to the next-to-last iteration is nearly equal to the

final iteration, and the two can be used interchangeably with little difficulty. Letting 8/ denote
the final coefficient vector, Eq. 03.28) can be rewritten as

variR(t,8) = aT¢.6 oy TwS b/ 1d¢.67) . (B.29)
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Eight reliability models have been found useful for modeling the out-of-tolerance stochastic pro-
cess. Each model corresponds to a particular out-of-tolerance mechanism, These mechanisms are
as follows:

Measurement Reliability Models

Constant out-of-tolerance rate [exponential model,)

Constant operating period out-of-tolerance rate with a superimposed burn-in or wear-out
period (Wetbull model,)

System out-of-tolerance resulting from failure of any components, each characterized by a
constant failure rate (mixed exponential model,)

Out-of-tolerance due to random fluctuations in the TME measurement attribute (random
walk model.)

Out-of-tolerance due to random measurement attribute fluctuations confined to a re-
stricted domain around the nominal or design value of the attribute (restricted random
walk model,)

Out-of-tolerance resulting from an accumulation of stresses occurring at a constant aver-
age rate (modified gamma model,)

Monotonically increasing or decreasing out-of-tolerance rate (mortality drift model,)
Out-of-tolerance occurring after a specific interval of time [warranty model.)

These processes are modeled by the mathematical functions described below. Derivatives with re-
spect to the coefficients are included for purposes of maximum likelihood estimation [see Egs.
(B. 10) and (B.27)].

Exponential Model
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Mixed Exponential Model
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Random Walk Model
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Restricted Random Walk Model
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Modified Gamma Model

PPN
Rit.o)=edt 5 B0°

n=0 n!
OR(.0) _  _4¢ (63
IR({.6) _ )
96, te 3!

Mortality Drift Model
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Warranty Model
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B.1 O Calibration Interval Determination

B.1 0.1 Interval Computation -

Once the failure model is chosen, the computation of the calibration interval T, corresponding to
the prescribed EOP reliability target R, is obtained from

R(T.&)=R | (B.30)

The recommended method for getting T is one involving a two-step process, First, try to solve for T
using the Newton-Raphson method. If this does not converge, then get T by trial-and-error in
which tis incremented until a value is found for which R(t .8)> R.

B.1 0.2 Interval Confidence Limits

Upper and lower confidence limits for T are computed to show the bounds beyond which the as-
signed interval becomes questionable, Explicit methods exist for computing these limits for cer-
tain specified reliability models (for example, the exponential and Weibull models.) However, no
general method Is available for computing these limiis for arbitrary models applied to the analysis

of censored data, Since calibration history data are in this category, another approach is called
for.

Rather than try to formulate a general method directly applicable to interval confidence limit de-
termination, an indirect approach will be followed involving the determination of confidence limits
for the reliability function R(t.6). This enables the determination of upper and lower bounds for T
closely related 1o interval confidence limits, Indeed, for single-coefficient reliability functions,
these bounds are synonymous with interval confidence limits.

Upper and lower bounds for T, denoted 7, and 71, respectively, are computed for 1-a confidence
from the relations

R(7,.0) +zm_v‘ ar{R(7,.6))= R, (B.31)
and
R(7.0)- 2, VariR{7,6)) = R . (B.32)

where Var{R(t,8)]is given by Eq. (29), and z, 1§ obtained from
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Eqgs. (B.31) and (B.32) give only approximate upper and lower limits for T since they are obtained
by treating R(t, 8) as a normally distributed random variable, whereas R(t, 6) in fact follows a bi-
nomial distribution, The results are satisfactory however. Minimum acceptable sample sizes
needed to infer the stochastic process are large enough to justify the use of the normal approxi-
mation to the binomial.

B.11 Dog/Gem ldentification

Two methods for identifying performance outliers and one method for identifying support cost
outliers are discussed in this section, The first performance outlier identification method requires
that a prior analysis be performed to ascertain the appropriate reliability model and to estimate
its coefficients. Using the results of thts analysis, serial number item dogs and gems are identified
and their records are removed from the data. The data are then reanalyzed and a refined set of
coefficient estimates is determined. The second performance outlier identification method consists
of an a priori identification of TME parameter dogs and gems based on certain summary statistics,
Using these statistics, serial number item dogs and gems are identified and their records are re-
moved from the data before analysis.

The first method is preferred if accurate individual dog/gem calibration intervals are wanted. The
second method is preferred if dogs and gems are managed collectively, The second method is
much easier to implement and is the recommended method,

B.1 1.1 Dog/Gem Identification—Method 1

The variance in the model can be used to identify dogs and gems at the TME parameter and TME
manufacturer/model levels. The parameter level dogs are identified as follows:

Let (y,,v.t,,v). v=123. -+ .n, represent the pairs of observations on the uth parameter of a given
manufacturer/model, The variable t,, is the resubmission time for the vth recorded calibration;
Yuv = O for a failure, and y,,, = 1 for an in-tolerance. A mean interval and observed reliability are
computed according to °

)= Y.

.1
Ry=— Zy,w. (B.35)

A lower confidence limit for the expected failure probability is computed by

Rpy = R({t).0) - zaqVariR({t, )60, (B.36)

where 2, is obtained from
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An upper 1- B confidence limit for Ru can be obtained from the expression
b (n,\. . -
p= 2( "JRL‘(I—RU)"" o (B.37)
T x=0\X

where b = n, R,. The parameter is identified as a dog with 1 - @confidence if R, <Ry, Gems are

identified in like manner:
Ry = R({ty).6) + zq/VarlR({t,,).6), (B.38)

and
Wy - n,-X
B= ,ix#]Rf(l_Rl’)# , (B.39)
XY=

The parameter is identified as a gem 1f Ry, > R({t, ).9).

Following the same treatment with “instrument class” for “manufacturer/model” and
“manufacturer/model” for “parameter,” identifies dogs and gems at the manufacturer/model
level. Before this can be done, TME parameter in- or out-of-tolerance results need to be converted
to TME unit in- or out-of-tolerances, This is normally done by calling a TME unit out-of-tolerance
if any of its parameters is observed out-of-tolerance,

B.1 1.2 Dog/Gem ldentification—Method 2

In method 2, a comparison is made between a summary statistic taken on the parameter of a
TME unit and a corresponding summary statistic formed from parameter data pooled for the
manufacturer/model, Method 2 is applied without prior knowledge of the specific reliability model
governing the stochastic process. So, the statistic chosen should be considered a good general
standard for comparison. One statistic that meets this requirement is the observed mean time be-
tween failures. The mean time between failures for the uth parameter of the jth instrument is

computed as follows:
t
MTBF j, = L) (B.40)

1-R
where (t qwand R, are as defined in Egs. (B.34) and (B.35.)

Letting K represent instruments within the TME manufacturer/model grouping of interest, the
aggregate MTBF for the parameter is given by

T,
MTBF, = £ |, (B.41)
X
where

K
T, =J§n St - (B.42)




and

K
X, = %n JA-R ) . (B.43)

The test for identifying a parameter dog involves computing an F-statistic with 2(x,+1) and 2x;
degrees of freedom, where x; and X,are defined by

{nJu—RJ,,). if MTBF j, < MTBF,
X) = . .
and
) Xy. If MTBF j, < MTBF
n;(1-R ), if MTBF, < MTBF

To complete the statistic, total resubmission times T,and T,are determined according to

n- njﬂ(tjy),irMTBFJ,, < MTBF,
T,,. if MTBF,, < MTBF,

’

and
. _{ Ty, if MTBF j, < MTBF,,
n J#<t I ) {f MTBF), <MTBF j,

Having determined X,, X,, Ty and T,, an “observed” F-statistic is computed as

FeX1 T2 (B.44)
X9 +1 Tl

To identify the parameter as a dog with 1-a confidence, this statistic is compared with a computed
F-statistic obtained from the F distribution:

Fo = A_ql2(xg + 1),2X1) . (B.45)
If F>F, the parameter is considered a dog, The parameter is considered a gem if

X 1T Fr(2X12(X2+ 1)) . (B.46)
x1 Ty

Again, dog and gem identification at the manufacturer/model level is done by substituting
“manufacturer/model” for “parameter” and “instrument class” for “manufacturer/model,”

B.1 1.3 Support Cost Dog Identification

Besides performance dogs, TME items can be identified as dogs on the basis of excessive calibra-
tion support costs. The identification of support cost dogs may aid in decisions regarding correc-
tive administrative or engineering action and/or may supplement the identification of perfor-
mance dogs.




For purposes of support cost dog identification, the expectation of the support cost per calibration
action for a manufacturer/model is estimated. If the support cost for the jth calibration of the’ ith
instrument is denoted Cy, then this estimate is given by

1
=—2Cy . ' (B.47)
{j=1 :

where n; is the number of calibrations done on the ith instrument, The corresponding standard
deviation is computed in the usual way

ci)2 (B.48)

To identify a given instrument as a support cost dog, a determination is made whether its support
cost exceeds the mean support cost for the manufacturer/model to an extent that its cost can be
considered to lie outside the manufacturer/model support cost distribution, This is done by first
computing the lower support cost confidence limit for the instrument and the upper support cost
limit for the instrument's manufacturer/model, These limits are obtained as follows:

The lower confidence limit (LCL) for the instrument is given by
Cl =Ci~tg y st/ ng . (B.49)

where vi=nr 1. To get the upper confidence limit (UCL) for the instrument's manufacturer/model,
the following quantities are first computed:

kn
1
;EZ“Cy : (B.50)
=1)-1
k ny
2:—-1——1;2_:1(C—Cy)2 : (B.51)

where kisthe number of serial numbered instruments within the manufacturer/model, and
n=Zn;, The UCL is computed from

CV=Cityps/Vn | (B.52)

where v=n- 1. If C"' > Y, the item is identified as a support cost dog with 1-af confidence,

B.1 1.4 Suspect Activity Identification

A given TME user’'s requirements may exert greater stresses on the TME than those exerted by
other users, This may have the effect of yielding calibration history data on the equipment that
does not represent the behavior of the equipment under ordinary conditions. Similarly, data
recorded by certain calibrating facilities may not be representative of data recorded by the main-
stream of such facilities, Both cases involve what are called here as suspect activities.

To identify a suspect activity, consider all calibrations on all TME parameters done by the activity.
Compare them with all calibrations of these same parameters done by other activities. Let the set




of parameters calibrated by the activity of interest be named m and the set of other activities’ cali-
brations of these parameters be-named M. A suspect activity can be Identified using the median
test described in many statistics texts, In applying this test, evaluate whether parameter out-of-
tolerance rates (OOTRs) observed from calibrations done by the activity tend to be significantly
greater than parameter OOTRS taken in total. A parameter’'s O0OTR is the inverse of its MTBF, as
defined in Eq. (B.40):

1

OOTR = F

03.53)

The median test procedure is as follows, First, find the median O0OTR for m and M combined,
Next, define n,,, and npq as the number of cases in mand M, respectively, that lie above the
median, and define ng =y + npg. The activity is identified as a suspect activity with 1-a confl-
dence if

Ng
Y plni<a * (B.54)
n=ng,
where
2 2
p(n) = (ng ) (Y (B.55)

N = g — TN - N —ng 5 )1 @N)!

B.12 Data Continuity Evaluation

To evaluate data continuity over the life cycle of a given TME grouping, a history of performance
must be maintained. This history should contain information on the total resubmission times and
total number of out-of-tolerances, with the dates that these values are recorded for each parame-
ter calibrated, This information should be recorded each time the calibration history data are in-
cremented for analysis, Total parameter resubmission times and out-of-tolerances are determined
according to Egs. (B.42) and (B.43.)

From the resubmission times and out-of-tolerance totals for each parameter, a history of MTBFs
is assembled. This history is used to determine MTBF as a function of equipment inventory life-
time. Denoting this lifetime by T, MTBF is modeled according to

M(T)= Mg + AT + T2 . (B.56)

Standard regression methods are used to get MO. 4 and g and to determine confidence limits for

M(T) .

The procedure for determining discontinuities in the calibration history data begins with identify-
ing and excluding parameter MTBF values that lie outside statistical confidence limits for M(T).
Following this weeding out process, My, 4 and g are recomputed, and a more representative pic-
ture of M(T) IS obtained. Next, the slope of M(T), given by

oM

m=7t—=2+2/3! ' (B.S?)

is searched for points (if any) at which | ml > 0.5. The latest calendar date for which this happens
is denoted T,..

- @ e



Two cases are possible: m > 0.6 and m < -0.5. For cases where m <-0.5, data recorded prior to
T, are excluded from analysis, If m> 0.5, reliability estimates R, and R are computed according

to

where I is the current assigned interval and T is the most current date for which calibration his-
tory are available. Defining AR = (R. - R') / R, a discontinuity in calibration history is identified If

IAR|> D, (B.58)

where D isa predetermined coeflicient. The value of D is determined by data available and the de-
gree of data homogeneity wanted. For most cases, D = 0.2 has been found useful,

If Eq. (B. 58) applies, parameter calibration history data prior to T, are deleted from records used
for interval analysis.

B.13 Data Truncation

Before analysis, data are truncated to remove inordinately short and inordinately long resubmis-
sion times. These times are recognized as uncharacteristic with regard to duration and in con-
trast to reliability expectations, To elaborate, short resubmission times are expected to be
associated with high reliability and long resubmission times are expected to be associated with
low reliability. Thus, short resubmission time samples with inordinately low values of TME
observed reliability or long resubmission times with inordinately high values of TME observed
reliability are truncated.

A short resubmission time may be defined as one that is less that one quarter of the mode re-
submission time, determined in the usual way. A long resubmission time maybe defined as one
that exceeds twice the mode resubmission time. The sampled TME reliabilities for short resub-
mission times are considered Inordinate if they fall below the 1-u lower confidence limit for an a
priori expected reliability. The sampled long resubmission times are considered inordinate if they
exceed the upper 1-a confidence limit for the a priori expected TME reliability.

The a priori TME reliabilities are determined from a simple straight line fit to the data:

Rapr‘or‘ =a+bt .

The straight line fit and the upper and lower confidence limits are determined by regression anal-

ysis If calibration history data are recorded by parameter, parameter reliabilities will need to be
converted into TME reliabilities for data truncation analysis,




B.14 Calibration Interval Candidate Selection

Analyses of calibration history will be done regularly. It is unreasonable to suppose that enough
new information will be accumulated between successive analyses to warrant reevaluation of cali-
bration intervals for each parameter, manufacturer/model or instrument class in the system
history data base at each analysis session, This implies that only certain parameters, model
numbers and instrument classes will be singled out for reevaluation at any given analysis run.
This results in analysis of only those parameters, models or classes with non trivial data incre-
ments accumulated since the previous interval assignment or adjustment, This includes all first
cases that have accumulated enough data for initial analysis,

In the identification of interval candidates, the following definitions will apply for the parameter or
class of interest:

N.yg = total number of calibrations accumulated at the date of the previous interval
adjustment or assignment
T

= total resubmission time at the date of the previous interval adjustment or
assignment

Noor = total number of out-of-tolerances accumulated at the date of the previous
interval adjustment or assignment

noor = humber of out-of-tolerances accumulated since the last interval adjustment or
assignment
Neal

= number of calibrations accumulated since the last interval adjustment or
assignment

| = current assigned calibration interval.
Using these quantities, a candidate identification coefficient is determined according to

&= Neall / T-noot / Noor . (B.59)
1+noor / Noor

A parameter, model or class is identified as a candidate for analysis if either of the following con-
ditions are met:

(1) If T= O and Ny + neg 215,25 or 40 at the parameter, model, or class level, respectively,

(2) If TeOand 18 | 2 0.05 and Negp + negr 2 15, 25 or 40 at the parameter, model, or class
level, respectively.

B.15 Establishing Measurement Reliability Targets

Establishing measurement reliability targets involves a consideration of several tradeoffs between
the desirability of controlling measurement uncertainty growth, and the cost associated with
maintaining such control, The tradeoffs are applicable whether the goal is management of a
ground-based calibration interval analysis system or designing TME for spaceflight applications.

In Section B, 1, it was shown that establishment of an appropriate measurement reliability target
is a multifaceted process. Unfortunately, no handy “rule-of-thumb” guidelines are applicable to
the problem. In the last few years, some general precepts have been established that help in
identifying important factors to consider and in getting a sense of how these factors interrelate.

The guiding points in establishing a measurement reliability target are the following:




« TME measurement reliability is a measure of TME parameter uncertainty.

« TME parameter uncertainty is a major contributor to the uncertainty of the end
item test process,

« The uncertainty in the end item test process affects the uncertainty in the end
item attributes being tested.

« End item attribute uncertainty affects end item utility.

Given that the immediate objective of setting a measurement reliability target is the control of test
process error, the above list provokes three central questions:

«  How much does TME parameter uncertainty contribute to test process uncertainty?
« How sengitive is end item uncertainty to test process uncertainty?
« How sensitive is end item utility to end item uncertainty?

The subject of test process uncertainty is discussed in detafl in Sections 5 and 6. Reiterating from
these discussions, test process uncertainties emerge from several sources:

. Intrinsic sources inherent in the TME and end items

« Sensing uncertainties introduced by perturbations to attribute values caused by mea-
surement SeNsors

« Interface uncertainties arising from random changes in properties of cabling and inter-
connects

« Sampling uncertainties accompanying analog-to-digital and digital-to-analog conversion
processes

*  Environmentally induced uncertainties caused by variations in temperature, humidity,
electromagnetic fields, etc.

e  Calibration induced uncertainties
o  Other sources, e.g., stresses induced by shipping and handling.

The effect of TME uncertainty on total test process uncertainty can be established by considering
end item attribute value distributions resulting from testing with TME exhibiting maximum un-
certainty (the lowest level of TME measurement reliability achievable in practice) and minimum
uncertainty (measurement reliability = 1.0.) If the range between these extremes is negligible,
then TME uncertainty is not a crucial issue and measurement reliability targets can be set at low
levels. In certain cases, it maybe determined that periodic recalibration of TME is not needed, If
end item uncertainty proves to be a sensitive function of TME uncertainty, however, then the TIME
measurement reliability target takes on more significance. Under these conditions, a high mea-
surement reliability target may be called for. It should be stressed that not all cases are clearcut.
Considerable ambiguity and many gray areas are likely to be encountered in practice.

Maintaining appropriate measurement reliability targets may not always be possible in space-
based applications. In these cases, supplemental measures may need to be taken, These mea-
sures are described in Section 3.4.




For many space-based applications, lengthening the calibration interval of on-board TME is
equivalent to designing systems to tolerate low measurement reliability targets. From this, It is
apparent that this can be achieved if the TME system is “over designed” relative to what is needed
to support end item tolerances. Such over design may involve the incorporation of highly stable
components and/or buili-in redundancy in measurement subsystems. Sometimes where end item
performance tolerances are at the envelope of high-level measurement capability; it maybe nec-
essary to reduce the scope of the end item’s performance requirements, This alternative may be
avoided by using the SMPC measures described in Section 6,4 and Appendix D.




C.| Introduction

Since the 1950's, the need to ensure that measurable parameters of end items are held to within
specifications has led to the formal institution of test and calibration support infrastructures.
Each such infrastructure is characterized by a hierarchy of test and calibration levels. As dis-
cussed in Section 6, the integrity of test and calibration hierarchies is maintained by enforcing
traceability of measurement accuracy from top to bottom (see Figure C. 1.)

Although traceability is avital element in ensuring the integrity of test and calibration hierar-
chies, enforcement does not insure that integrity of the traceability will be intact. A second ele-
ment consists of a body of program and/or process controls that constrain the propagation of
measurement uncertainty from level to level to within acceptable limits,

Historically, controlling this “vertical” uncertainty propagation has been achieved by imposing re-
quirements for high ratios of accuracy between hierarchy levels, In recent years, enforcement of
such high accuracy ratios has often been difficult or even impossible, Competitive market pres-
sures and stringent Government performance objectives for high tech systems have resulted in
end item tolerances that border on the limits of accuracy of even the highest level standards.
Managing test and calibration infrastructures within this environment requires the application of
analysis tools capable of determining precise accuracy requirements between hierarchy levels.
Moreover, such tools need to be versatile enough to show conditions where end item performance
objectives are not supportable within the framework of existing test and calibration technology.
This appendix describes the mathematical concepts on which such tools are built.

C.2 The Test and Calibration Support Hierarchy

Test and calibration infrastructures are characterized by several technical and management pa-
rameters. These parameters include calibration system, test system and end item performance
tolerances: calibration system and test system calibration intervals; test intervals for fielded end
items: accuracy ratios between calibration systems and test systems and between test systems
and end items: equipment maintenance and adjustment policies; measurement reliability targets:
acceptable false alarm rates: and missed fault rates,

Individual support scenarios tend to involve unique combinations of end item requirements, test
system capabilities, calibration capabilities, test and calibration support budgets, etc. Because of
this, each infrastructure is unique. There is no reference set of engineering tables or statistical
guidelines by which to configure cost effective infrastructures, Instead, what is available is a sys-
tematic methodology for analyzing support capability requirements in terms of end item quality
and performance objectives. The essentials of the methodology have been incorporated in a user
interactive PC-based system called the System for Tradeoff Analysis and Reporting (STAR.) STAR
is maintained by the U.S. Naval Warfare Assessment Center, Code 3121, in Corona, CA. The
methodology is presented in this appendix.
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FIGURE €C,1 — THe TEST AND CaLBRATION HIERARCHY. The hierarchy shows the flow of sup-
port requirements from_the end item level to the primary calibration support level. Immediate
end item_support requirements are in terms of the maximum uncertainty that can be, toler-
ated during testing. The utility or “quality of an end Item population is &ffected by this test
process uncertainty. Test process uncertainty is in turn affected by the process uncertainty
accompanying test system calibration. AlSO, calibration process uncertainty at each level in
the hierarchy is affected by calibration process uncertainty at other levels. In this way, pro-
cess uncertainties propagate vertically through the hierarchy to affect end item quality.

The methodology links each level of the test and calibration support hierarchy in an integrated
model by describing each level of the hierarchy in terms of the support it gives to the next htghest
level and the support it receives from the next lowest level, For any given level, the support given
to the next highest level is measured in terms of several parameters, These are:

« Measurement reliability of the attributes calibrated or tested

« Length of the attributes' test or calibration interval

«  Probabllity of incorrectly reporting out-of-tolerance attributes as in-tolerance
«  Probability of incorrectly reportfng in-tolerance attributes as out-of-tolerance
«  Avallablility of items tested or calibrated

« Cost of test, calibration and repair

«  Cost of rejection (with consequent adjustment, repair or rework and downtime) of in-toler-
ance attributes

+  Cost of acceptance of tested/calibrated attributes.

- e = -




Of these, “cost of acceptance of tested/calibrated attributes” involves a concept, developed during
RD&E efforts. This and related concepts will be discussed in detail later under cost modeling.

The support received from the adjacent level is measured in terms of the parameters:
« Measurement reliability of the testing or calibrating attribute
«  Avadlability of supporting items
«  Cost of test, calibration and repair of supporting items.

These parameters connect from one level of the hierarchy to the next in a contiguous sequence.
Hence, any change in any of these parameters at any given level affects the parameters at other
levels within the hierarchy. This fact makes possible the development of methods and techniques
that enable the analysis of costs and benefits. This supplies both summary results for the entire
hierarchy and detaled visibility at each level.

A simplified diagram of the test and calibration support hierarchy is shown in Figure C. 1. In the
hierarchy, the end item is placed at the top of the chain. Below the end item is the test system
and below the test system is a series of calibration systems, culminating in a primary calibration
system (e.g., NIST), labeled Calibration System 1.

Testing a given end item measurement attribute by a test system yields a reported in-or out-of-
tolerance indication (referenced to the end item test tolerance limits), an attribute adjustment
[referenced to the end item attribute’s adjustment limits) and a “stamp of approval” showing that
the end item attribute is approved for use, deployment, distribution, delivery or sale. Attributes
found outside predetermined adjustment limits are adjusted. In organizations where only out-of-
spec attributes are adjusted, the adjustment limits are set equal to attribute performance toler-
ance limits. In organizations where all attributes are adjusted despite their value, the adjustment
limits are set equal to zero, Many organizations place adjustment limits between these extremes,
The utility or “quality” of the aggregate accepted population of end item attributes can be ex-
pressed in terms of the percentage expected to be In conformance with their specifications. This

percentage is termed the beginning-of-period (BO P) measurement reliability. The BOP measure-
ment reliability is referenced to the attribute’s performance tolerance limits.

Similarly, the results of calibration of each test system attribute include’ a reported in- or out-of-
tolerance indication (referenced to the test system test limits) and an attribute adjustment
(referenced to the appropriate test system adjustment limits), if needed. The same sort of results
arise from calibration of the calibration system and accompany calibrations down through the hi-
erarchy to the primary calibration standard,

Ordinarily, calibration standards are not managed to specified performance or test
tolerances and reported as in- or out-of-tolerance, but instead receive a reported
measured value, accompanied by confidence limits. Since calibration standards
are not managed to specified tolerances, a statement of BOP measurement relia-
bility is seemingly not applicable. Further, the treatment of calibration standards
differs from that of calibration or test systems since calibration standards’ mea-
surement attribute values are usually reported instead of adjusted,

These observations appear to set the calibration of standards apart from other test or calibration
scenarios. With regard-to reported attribute values in place of adjustments, however, such reports
can be considered to be completely equivalent to non-intrusive adjustments to nominal in that
reported values are used as nominal values until the next calibration, Also, the lack of specified
tolerances for calibration standards will probably be eliminated In future calibration standard




management systems. This is because such standards are assigned calibration intervals, which
can be optimized only if specified tolerances accompany reports of calibration. Specifically, a call-
bration standard attribute’s reported measured value needs to be accompanied by both a set of
limits (i.e., performance specifications) expected to contain the attribute value over the duration of
its calibration interval and an estimate of the probability that this expectation will be realized (Le.,
a measurement reliability target.) The methodology presented here assumes this practice will be
followed,

It should be noted also that in many applications, end items are not tested at designated periodic
intervals. In military weapon system applications, for example, end item testing often happens in
response to detected operational failure or may be done before use. In such cases, the end item
test interval may be thought of as the average time passed between tests. In commercial applica-
tions, end item testing may take the form of receiving inspection of purchased equipment, In
these cases, the end item test Interval can be regarded as the duration between factory testing
and customer testing.

C.3 BOP Measurement Reliability—Test Process
Accuracy

From a test/calibration program perspective, it can be assumed, at any two consecutive levels of
the test/calibration hierarchy, both the unit-under-test or calibration (U UT) and the test or cali-
bration system (TME) are drawn randomly from their populations, For discussion purposes, it will
also be assumed the UUT and TME attribute values of interest are normally distributed with zero
population means (that is that at any given time, the average value of each population of end item
attributes is equal to the attribute’s nominal or design value), and with standard deviations
(uncertainties) that grow with time passed since prior testing and/or adjustment (see Section 6.)
UUT attribute adjustments are assumed to be made using testing or calibrating TME attributes
as reference values. Attribute values are taken to be tolerance with two-sided performance spec-
ifications and to be assigned associated two-sided test tolerance limits and adjustment limits,

If the “true” value of a UUT attribute at time of test or calibration is represented by x, and its
value as measured by the supporting TME is represented by y, then performance, test and ad-
justment specifications can be defined as follows:

~Lper Sx<Lper UUT attribute is in-tolerance

~Liest SY < Liest UUT attribute is observed (reported) in-tolerance

Ys-Lagjor LagysY  observed value of the UUT attribute is adjusted to
center spec using the TME attribute as a reference.

UUT items are assumed to be tested or calibrated at periodic intervals, called test or calibration
intervals. The elements associated with calibration intervals are illustrated in Figure C.2. The
start of each interval is termed the “beginning-of-period” (BOP), and the end of each interval is
called the “end-of-period” (EOP.) The beginning-of-period starts upon receipt of the UUT by its
user, and the end-of-period is marked at the point where the UUT is sent for test or calibration by
the user facility. Hence, testing or calibration of UUT items is referenced to the items’ EOP. This is
in contrast to the times at which TME items are used to test or calibrate UUT items. TME are as-
sumed to be drawn from their populations at random times within their calibration interval,
Consequently, the usage of TME attributes is referenced to average-over-period (AOP) times,
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FIGURE C.2 — THE CALIBRATION CYCLE. The elements of the calibration cycle include test or

calibration, usage (the calibration interval), shipping and storage, data recording, and repatr
or adjustment,

Here, it is worthwhile to note that the test or calibration interval of an item is a quantity that can
adopt three identities. From the standpoint of UUT availability to the user, it is the elapsed time
between a given BOP date and the successive EOP date, From the standpoint of recall of the UUT
for test or calibration, it is the ttme elapsed between successive BOP dates. From the standpoint
of the testing or calibrating facility, it is the time elapsed between successive test or calibration
dates, In this appendix, the interval will usually be takento be synonymous with the time the
UUT 1s available for use. Other segments of the time between calibration dates will be considered
in the analysis of equipment availability, discussed later.

The test or calibration process is characterized by several sources of uncertainty, quantified by
the following set of standard deviations:

Oeop = the true standard deviation of UUT attribute values after the UUT's usage pe-
riod (before shipping to the test or calibration facility,)

Os = the contribution to the UUT standard deviation due to shipping stresses (set to
zero if the UUT s not shipped to the test or calibration facility.)

ommME =  the true standard deviation of TME attribute values at time of test or calibra-

tion. If random demand of TME Items 1s assumed, this is set equal to the AOP
\éalue ofdtr;e TME attribute standard deviation. Determination of AOP values is
iscussed later.

oyp = thestandard deviation of the test or calibration process.

As a result of UUT testing or calibration, we “observe® a UUT EOP measurement reliability given
by




Robs = ZF[I’teSt )—1 . (Col)
Ogbs
where F(0) is the cumulative distribution for the normal distribution, and where
"%bs 02 eop +o§ “’12' (C.2)
The Variance otz represents the measurement uncertainty associated with testing or calibration:
— a2 2
otz = OME * Oip- (C.3)

the sutmeasurement reliability (in-tolerance probability) at EOP is given by

Lper
Reop -— 2F '1, (C.4)
Oeop
where the quantity geop can be obtained from
2 2
agop =0obs ~O0s — 612 . (C.5)
The true UUT measurement reliability at time of test or calibration is given by
Rirue = 21{ ) 1, (C.6)
Otrue
where
o?me cop* %
2 2
obs ~ %t , {(C.7)

UUT iterns are tested to test tolerance limits and adjusted to adjustment limits. Adjustment limits
are set in accordance with the policy of the test or calibration facility. There are three main ad-
justment policy categories:

Ladj = Liest Adjust if “failed” only
Lagj = O Adjust always
0< Lgdy < Lyest Adjust “as-needed,”

UUT attribute adjustment may consist of a physical adjustment or may take the form of a correc-
tion factor. Frequently, UUT attribute adjustment to nominal results in placing the attribute value
at a quasi-stable point, well within the attribute’s tolerance limits, In these cases, an adjust al-
ways policy is often preferred. In other instances, adjustment to nominal may lead to resetting the
‘attribute value to an unstable point where the UUT will try to spontaneously revert or “rebound.”
The latter behavior contributes an additional source of uncertainty characterized by

Orb = the standard deviation due to reversion or rebound of UUT attributes away from
values set as a result of adjustment,

In these cases, an adjust if failed only policy is often the best choice,




Regardless of adjustment policy, UUT items are assumed to be received by the test or calibration
facility with attributes distributed according to the pdf

— 1 —X2 /20"2 . 8
f (Xme rue (C.8)

It is similarly assumed UUTs are tested with TME that yield observed attribute values distributed
according to

e"u-x/20} (C.9)

Jylx) 75-};-;"

As a result of the test or calibration process, UUT items are delivered to the user with a mea-
surement reliability reflecting the quality of the test or calibration process. Generally, the higher
the BOP measurement reliability, the longer a UUT item can remain in use before subsequent
testing or calibration is required, Consequently, determination of BOP measurement reliability is
an important aspect of the uncertainty management process. Therefore, we seek to determine the

distribution of UUT attribute values following test or calibration and adjustment, This “post test”
distribution s given by

Jpt(x)= f(xinot adjust)P(not adjust) + f(xladjust)P(adjust), (C.10)

where the notation f(xIE) indicates the pdf for x given an event E has taken place, and P(E) rep-
resents the probability that E has occurred,

The first component of the RHS of (C. 10) is obtained using the Bayes’ relation
JixInot adjust)P(not adjust) = f(not adjustix)f(x). (C.11)

The pdf fix) 1s given in Eq. (C.8.) The pdf finot adjust 1 is readily obtained from Eqg. (C.9), using
the definition of adjustment limits:

Lagy
S(not adjustlx) = j Syl x)dy
"I‘adl
_ F(Ladj + x)+F(LadJ ~-X -1
ot ot . (C.12)
The pdf f (xladjust) is given by
_ 1 -x? /2(o? +03,)

(xladjust) = ——5——5—-e t T C.13
f ju . \/fu_(otz + O'rb) ( )

where rebound from adjustment has been included, The probability Pnot adjust) is given by:

P(not adjust)= [dx f(x) [dy f(yix)
—00 _Lad’
111 L
=2 [ zad |-1, (c. 14)
Otrue Ot |

Combining Egs. (C. 11) - (C. 14) in Eq.(C. 10) gives




~x2 /2(of +07b) (renew always). :

i 1
Jpt(x) WC

e-—.\c2 /2620 e—X2 /2(07 +07%)

T ¢(x) moz +K ‘/—2—7;(0‘2 N oy?b) (otherwise), (c. 15)
true
where
o(x) - (L“g’;x)w(l‘“‘g_x)—l. (C.16)
t
and
K=2{1-F| a4 . (C.17)
tme+dt2

Since the BOP reliability is referenced to the point of return of the UUT to the user, the effects of
shipping need to be considered. This s done in accordance with the following assumptions:

(1) Stresses due to shipping occur randomly with respect to magnitude and direction,
[2) Stresses due to shipping occur at some average rate r.
(3) Shipping requires some average duration of time t.

Given these assumptions: regponses due to shipping are seen to follow the classic random walk
behavior. Letting the variable { represent the value of the measurement attribute following ship-
ping, the pdf for { can be expressed as

e—6-x12 /242
Q(Clx)E—VE;;S— . (C.18)

where x is the UUT attribute value before shipping, and where 02 =

S (52 )I’t The BOP measure-
ment reliability is given by

oo Lper
Rbop = [axfpt (X) [dgq(gix. (C.19)
—oo ”Lper

With adjust if fatled onlty and adjust as-needed pdicies, Eq. (C, 19) is solved numerically. For the
adjust always adjustment policy, Eq. (C.19) can be solved in closed form:

L .
Rpop = ZF[ng " f:;r ) ]-1 ........ (adjust always.) (C.20)
t s

C.4 Interval Adjustment

One of the primary goals of effective uncertainty management is ensuring that TME measurement
reliabilities are consistent with end item quality or performance objectives, Such measurement
reliabilities, expressed in terms of the probability that a TME attribute is performing within its
performance tolerance limits over its test or calibration interval, are typically met by setting test




-

or calibration intervals so a minimum percentage of attributes or items are received in-tolerance
for calibration at EOP. These -minimum percentages are called EOP measurement reliability
targets.

For purposes of discussion, it will be assumed either some level of observed measurement relia-

bility, Robs: or some measurement reliability target R* is known or projected that corresponds to
a test ‘or calibration interval I which is referenced to a set of tolerance limits, tLper-

Immediately following test or calibration, the value of an attribute is localized to a neighborhood
of values defined by the accuracy of the testing or calibrating TME and the uncertainty of the test
or calibration process. As time passes from the point of test or calibration, the UUT experiences
various stresses resulting from transportation, storage, use, etc. These stresses contribute to “a
growing lack of confidence that the neighborhood of values contains the true value of the UUT at-
tribute. This uncertainty growth is depicted in Figure C.3.

f(x)
Si(x)

%) fix)

Probeb ty
Den ity

Xty

o x(t))

Parameter Value

FIGUREE.B — MEASUREMENT UNCERTAINTY GROWTH. The shaded areas mark the tolerance
limits T4per. As time passes since calibration or test, the F_roba_tblllt that the attribute of in-
terest is out-of-tolerance’increases. Thus, measurement reliability shrinks from BOP to EOP.

Let the measurement reliability of an attribute at some ttme t be denoted R(t) and let the desired
EOP measurement reliability target be represented by R*. Since test or calibration intervals are
set to achieve Rpps = R*, any change that effects either a change in R* or in Ryps Will require a
change in the interval I as follows:

R*+ R*’ =I-7I such that RI)=R.’
or

Rops = Rops = I = I' such that Ryps = R." .

From this simple scheme, it can be seen that an interval change is in order if either the mea-
surement reliability target is changed or if the observed measurement reliability varies, Generally,
if the interval I is held constant, the observed measurement reliability of an item of equipment
may change if either the item is changed in some physical way or tf its in-tolerance and/or main-
tenance criteria are changed. Physical equipment changes cause a redefinition of the various pa-




rameters that govern measurement uncertainty growth over time. Alteration of intolerance
and/or maintenance criteria are-manifested in changes of t+Lper, tLtest and tLqgg;.

Interval changes in response to measurement reliability target changes and changes in tolerance
Iimits are discussed below.

C.4.1 Interval Adjustment to Reliability Target Changes

Appendix B describes several mathematical functions used to model attribute measurement reli-
ability. Two of these functions, the exponential model and the random walk model are used in. the
present discussion to illustrate the effect of reliability target changes on test or calibration inter-
vals,

Exponential Model

If the measurement reliability of an item is characterized by a constant out-of-tolerance rate, A,
the measurement reliability In effect afier an interval I is given by

_ar

Reop = Rpope | (C.21)
from which
1 Reog
A= —-—log . (C.22)
I' " Roop)

Using Eq. (C.4) in (C.22) gives

1 1 L
A=-=lo oF| —BET -1‘ . (C.23)
I g{Rb"P{ ["eop)

where Rpop Is obtained using Eq. (C. 19) or (C.20), and %eop is given in Eq. (C.5.) The quantity
Oobs IS Obtained from Eq. (C. 1):

Cobs =— 11""3‘ (" (C.24)
F~ [—2-(1+Robs)}
Now suppose the reliability target is changed to R @ ". A new interval I is set as follows. As before,
Oobs = (C.25)
Fl %(HR") ‘
and, from Eqgs. (C.21) and (C.22),
r Reo
Roop = R — —eop
“op = Fbor exp[ ! log[% ]]
L
=2F(—{—""LJ—1 ,
Geop (C.26)
where
(Coop)? = (0bps)2 02 - 02 | | (C.27)
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and Rpop is as given in Eq. (C. 19) or (C.20) with Ofrue for Otrue in Egs. (C. 15) - (C. 17.) The
quantlty Otrue IS obtained as in-Eq. (C.7): '

(Girue)? (Goop)® + 62 . (C.28)

Solving for I in Eq. (C.26) gives

2F(Lper / Ceop) —1
log{ pe}gbopeop }
log(Reop / Rbop) .

(C.29)

with Reop given by Eq. (C.4) and Rb, given in Eq. (C. 19) or (C.20.)

Random Walk Model

With the random walk model, the variance in the attribute value of interest (before shipping) is a
linear function of the elapsed interval I

-2
of,op - abop +al
"trueo'2 (C.30)

where the coefficient a is a constant dependent only on the measurement attribute’s inherent

stability. Eq. (C.30) will be used to determine a new interval I' in response to a reliability target
change from Rto R'.

The first step is to compute a new value for Oobs USINg Eq. (C.25), and a ogqp Using Eq. (C.27.)
Next, Rbop 18 calculated using Eq. [C, 19) or (C.20) with Otrue in Egs. (C.15) - (C. 17.) From this,
6hop IS computed according to

L
_ per
Finally, I’ is calculated using Eq. {C.30):

= 2 1(0frue)? ~ (Gbop)? - 21 (€.32)

C.4.2 Interval Adjustment to Tolerance Limits Changes

An alteration of an attribute’s performance limits results in a redefinition of the standard by
which the attribute is judged in- or out-of-tolerance. This is shown in Figure C,4.

Such a redefinition results in changes in Ryop. R(t) and R(I)= Regp. IN addition, performance tol-
erance limit changes are normally accompanled by test tolerance limit changes and adjustment
Umit changes. The former affects Rops and the latter affects both Rpep and support costs in
terms of increased or decreased numbers of equipment adjustments performed,

To maintain measurement reliability objectives, such changes need a change in I, resulting in a
new interval I’ such that




demand for its usage. If the usage demand is random, Le., if the likelihood for use is uniform over
the interval, then the appropriate measure of this in-tolerance probability is the attribute’'s aver-
age-over-period or AOP measurement reliability.

AOP measurement relatability is the mathematical average of the measurement reliability from
time ¢ = O to time t = I, where the zero point corresponds to Rbop and t = I corresponds to Reop:

I
Raop™(1/ DRt . (C.43)
0
For the exponential model, this is given by

Rp -l -
‘sop -——i-‘i’ﬂu_e ) (exponential model) . (C.44)

For the random walk model, there are two possibilities. The first covers cases governed by the
adjust always policy (Laqy =0) and the second applies to other policies. For adjust always cases,

. L
1 11 T x2/2020)
Raop_mi[ t)dt I e dx

~Lper
e (L
=(/n] {ZF(——%)—-I}M. (random walk/adjust always) (C.45)
0
where, from Egs (C.30) and (C.20),
o2(W=02 +02 +02+at . (C.46)

For cases where Lqgy #O, setting I'= O in Eq. (C.45) will not return Rpop as expressed in Eq.
(C. 19.) This is because, if only a porUon of the UUT population is adjusted using the test system,
the resulting distribution of UUT attribute values is not strictly Gaussian, For these cases, nu-
merical Monte Carlo or Markov process techniques are needed to evaluate Rgop precisely.
Unfortunately, use of these methods is somewhat unwieldy. Experience with several simulated
examples, however, has shown that a simplification is possible. This simplification consists of
getling an approximate AOP value for oft), called %aop+ and plugging this quantity into the appro-
priate expression for R(t) to get Raop- Not only is this approximation useful for the Lagy # O case,
but also works well for the adjust always case.

Determination of a44p begins with getting an approximate value for %bop . This is given by
L

Obop = ——T7 - (C.47)
F 1[5(1+Rb0p)]

where Rbp is given in Eq. (C. 19) for Ladj # O adjustment policies, and in Eq. (C.20) for the
Lagy = O adjustment policy [for which Eq.(C.47) is an exact expression.) Working from Eg. (C.30),
Gaop Can be expressed as

Gy et sme Sm S e G " fae M Sae e Sy M~ = aEm - e



(5) A new 4 is calculated.

(6) The test tolerance limits are changed from *Liest to tLiest . and the adjustment limits are
changed from tLqg to tLadj (these changes are optional but normally accompany a per-
formance tolerance change,)

(7) Anew interval, 1', is calculated,

At step (1) above, the observed measurement reliability is given by Eq.(C. 1), where Gobs is com-

puted using Eq. (C.24.) Using Egs. (C.2) and (C.24), a value for Geop is calculated. In this calcu-
lation, the quantities o; and o4 are known.

At steps (2) and (3), the beginning-of-period measurement reliability is given as in Eq. (C. 19) or
(C.20)
oo L;)er
Rbop = Jdx fpt (X) [alq(ix) . (C.34)
—o ..L;m
where the pdfs are as defined in Egs. (C. 15) - (C, 18.)

At step (4), the measurement reliability is obtained with the aid of Egs. (C.21) and (C.4):

, , IL;
Reop = Rf)ope_;L 1 =2F(___p_er]_1 .
where, at step (5), the new out-of-tolerance rate is given by
are-Liogl L |op{ Zper | 4|1, (C.35)
, I Rbop - \ Ceop

At step (6), new test tolerance limits and adjustment lmits are determined, These changes neces-
sitate calculation of a new beginning-of-period measurement reliability Rf,p,. This is accom-
plished by using Eq. (C. 1) and (C. 15) - (C, 19) or (C.20) with L'per. Liest . Ladj and Rbop for their
unprimed counterparts,

At step (7), a new interval is calculated:
log {2F(L;,e, / Geop) -1}
, 1

R (4
I'= -5 ""P) , (C.36)

where oggp is given in Eqg. (C.27)

Since the calibration interval I was presumably managed to achieve a value of Rypg equal to the
desired target measurement reliability, it is assumed the observed measurement reliability will be
unchanged from its original value. Given this assumption, we have from Eq. (C.24),

Liest

Oobs = (C.37)

F Y1+ Ryps) /2]




(5) Anew 4 is calculated.

(6) The test tolerance limits are changed from tLjest t0 $Liest. and the adjustment limits are
changed from iLgq; to tLag; (these changes are optional but normally accompany a per-
formance tolerance change.)l

(7) A new interval, X', is calculated.

At step (1) above, the observed measurement reliability is given by Eq. (C. 1), where o,ps is com-
puted using Eg. (C.24.) Using Egs. (C.2) and (C.24), a value for gep is calculated, In this calcu-
lation, the quantities oy and o4 are known,

At steps (2) and (3), the beginning-of-perlod measurement reliability is given as in Eq. (C. 19) or
(C.20)

LI

Rbop = Idxfpz (x) jacq(ax) (C.34)
—L'

where the pdfs are as deftned in Egs. (C. 15) - (C. 18.)
At step (4), the measurement reliability is obtained with the aid of Egs. (C.21 and (C.4):
= -AT —
Reop R{)ope glgfﬁgp‘ 1

where, at step (5), the new out-of-tolerance rate is given by

1 1 L
A'=-=1 oF| B |4, C.35

At step (6), new test tolerance limits and adjustment limits are determined. These changes neces-
sitate calculation of a new beginning- of-period measurement reliability Rf,,. This is accom-
plished by using Eq. (C. 1) and (C. 15) - (C. 19) or (C.20) With Lpey, Liest , Lady and Rpop for their
unprimed counterparts.

At step (7), a new interval is calculated:

tog| 2F Eper / eop) - 1}

1'=—711-, R‘"’" . (C.36)
log ._e‘lP_]
. Rbop

where deqp is given In Eq. (C.27)

Since the calibration interval I was presumably managed to achieve a value of Ry, equal to the
desired target measurement reliability, it is assumed the observed measurement reliability will be
unchanged from its original value. Given thts assumption, we have from Eq.(C.24),

’e Lfest
O, = . (C.37)
obs = T4 Rype) / 2)




where fIx) and fly 1x) are given in Eqgs. (C.8) and (C.9.) From these expressions, it can be readily
appreciated that, usually, a discrepancy exists between the true and observed/reported in-toler-
ance levels. This discrepancy can be eliminated, however, by adjusting Ltest according to

Liest = Lper‘Jl + (o¢ / Gtme)2 ) (C.40)

As this expression shows, since uncertainties are present in the test or calibration process (i.e.,

ot > 0), the test limits should be placed outside the performance limits if reported in-tolerance
levels are to match true measurement reliabilities.

C.5.2 False Alarms/Missed Faults

A false alarm is a case in which an in-tolerance UUT attribute is falsely reported as out-of-toler-
ance. This can constitute a costly error because such a report may lead to unnecessary rework
and/or repair. Moreover, false out-of-tolerances can have a significant effect on calibration or test
intervals, particularly if intervals are adjusted to meet high (over 50%) measurement reliability
targets. This is because, in these cases, intervals are shortened in response to a reported out-of-

tolerance to a greater extent than they are lengthened in response to a reported in-tolerance test
or calibration result.

The probability of a false alarm is given by
P(false alarm)= P(xI< Lper.yl2 Ltest )

Lper e Lper —Liest
= Jrdax [rwxdy+ [rxdx [ Syixdy
~Lper Liest ~Lper - .
which integrates to
1 O Liest” Ouuet ). b Liest Oiruet
P(false alarm)= 2-75 | et /2 F —@—tﬂLJHF M)}ag . (C.41)
L, /Ouue {( o L\ o

Corresponding to the probability of a false alarm is the probability of a missed fault. From the
viewpoint of the UUT user, a missed fault is an attrlbute returned to the user facility from test or
calibration in an out-of-tolerance state. Recalling the earlier discussion on BOP reliability, the
probability of this occurrence is given by

P(missed fault)= 1- Rpop , (C.42)

where Rpop is given in Eq. (C. 19) or (C.20.)

C.6 Average-Over-Period Reliability

From Eq. (C.42), it can be seen that a viable measure of the quality of the test or calibration pro-
cess is the UUT BOP reliability. Likewise, from Eq.(C.4 1), since the probability y of a false alarm is
a function of Strue. the unnecessary rework cost is seen to be controlled to some extent by the
true EOP reliability. While these quantities are of interest, the UUT user is generally more con-
cerned about the measurement reliability of the UUT over the period of use, Le., over the test or
calibration interval. To put this in a somewhat more quantifiable framework, the user is inter-
ested tn the probability that the UUT attribute will be in-tolerance under the conditions of the




where fix) and jfly Ix) are given in Egs. (C.8) and (C.9.) From these expressions, it can,@ readily
appreciated that, usually, a discrepancy exists between the true and observed/reported in-toler-
ance levels. This discrepancy can be eliminated, however, by adjusting Ltest according to

Liest = Lper\1+(0t / Otrue)® - " (C.40)

As this expression shows, since uncertainties are present in the test or calibration process (.e.,
o> O), the test limits should be placed outside the performance limits if reported in-tolerance
levels are to match true measurement reliabilities.

C.5.2 False Alarms/Missed Faults

A false alarm is a case in which an in-tolerance UUT attribute is falsely reported as out-of-toler-
ance. This can constitute a costly error because such a report may lead to unnecessary rework
and/or repair. Moreover, false out-of-tolerances can have a significant effect on calibration or test
Intervals, particularly if Intervals are adjusted to meet high [over 50%) measurement reliability
targets. This is because, in these cases, intervals are shortened in response to a reported out-of-

tolerance to a greater extent than they are lengthened in response to a reported in-tolerance test
or calibration result,

The probability of a false alarm is given by
P(false alarm)= PUxI< Lper Jyl2 Ltest)

Lper s L per ~Lyest
= [reax [rwodys  Jrooax [ruxdy

"Lper Ltest ‘Lper
which integrates to

Lper /Otrue
P(false alarm) = 2-_71_2, | 3-52/2{ F(M)+ F(ﬁz&t;&mé)}dg . (C.41)

0, O
= per/atrue t t

Corresponding to the probability of a false alarm is the probability of a missed fault, Prom the
viewpoint of the UUT user, a missed fault is an attribute returned to the user facility from test or
calibration in an out-of-tolerance state, Recalling the earlier discussion on BOP reliability, the
probability of this occurrence is given by

P(missed fault)= 1- Rpop , (C.42)

where Ryop iS given In Eq. (C. 19) or (C.20.)

C.6 Average-Over-Period Reliability

From Eq. (C.42), it can be seen that a viable measure of the quality of the test or calibration pro-
cess is the UUT BOP reliability. Likewise, from Eq. (C.4 1), since the probability of a false alarm is
a function of oye. the unnecessary rework cost is seen to be controlled to some extent by the
true EOP reliability. While these quantities are of interest, the UUT user is generally more con-
cerned about the measurement reliability of the UUT over the period of use, i.e., over the test or
calibration interval. To put this In a somewhat more quantifiable framework, the user is inter-
ested in the probability that the UUT attribute will be in-tolerance under the conditions of the




1
Oaop = \ﬁl / 1)j(a§op +ad)dt
0

= 2 +.l_aI
bop "2 (random walk model) (C.48)
Note that if the UUT is used as the TME for the next highest level in the test and calibration hier-
archy, 06q0p is the value used for 6TME in Eq. (C.3.) This is because TME items are assumed to be
selected and used for UUT test/calibration at random ttmes over their calibration intervals,

For the exponential model, use of Eq. (C.44) gives

Caop = Lper
“p F'l[-%(l+RaOP)]

- Lper
<11 Rbop( any||
F {2[1+ 2P (1-e )]}

with Rpgp as given in Eq. (C. 19) or (C.20.)

(exponential model) (C.49)

C.7 Availability

The cost of operating a test and calibration program, and the cost of maintaining a functioning
field capability Is affected by the need for equipment spares. Spares costs are minimized by
maximizing equipment availability. The availability of an item of UUT is the probability that the
item will be available for use over the period of its administrative test or calibration interval. If
this interval is thought of as the time elapsed between successive BOP dates, then the availability
of an item is given by

I

availability = = trative interval *

(C.50)

where I is the “active” portion of the test or calibration interval as defined in Egs. (C,21 ) and
(C.30.) The difference between the administrative interval and the variable I is the downtime:

Td = administrative interval-1,

(C.51)
For our purposes, the composition of Td is assumed to be described according to
Td = calibration downtime+ adjustment downtime x P(adjust)
+ repatr downtime x P(repair) . (C.52)

Pladjust) is given in Eq. (C. 14.) The probability for repair is the probability that UUT items,
submitted for test or calibration, will need repair action besides the various adjustments and cor-
rections that normally accompany test or calibration. As the reader will note, this is a subset of
the total repair downtime, which includes downtime resulting from user-detectable functional
failures encountered during use, Since the present discussion is concerned primarily with cost
and performance as affected by test and calibration, only this subset is of interest in the present
context. To focus on this subset of repair actions, we define a parameter L,g, Which yields
Prepair) according to




P(repair) = 2[1 - F(—I—'E’E—H . (C.53)

Otrue

Lrep is a parameter that marks a limiting measurement attribute value, beyond which repair ac-
ttons are normally required to restore a UUT attribute to its nominal performance value.

The remaining quantities in Eq. (C.52) will now be considered. First, we define the following
variables

Teal = Mmean time needed to do a test or calibration action.
Tess = mean shipping and storage time experienced between EOP and BOP dates,
Trep= mean time needed to do a repair action,

Trss=  mean shipping and storage time experienced between submittal and return of an
item of UUT submitted for repair.

Tady= mean time needed to do a routine adjustment of a UUT measurement attribute,
Given these definitions, we have
calibration downtime = Tt + Tess
adjustment downtime = Taqy

repair downtime = T,_p + Trss .

It Is assumed, under ordinary circumstances, these quantities are known, Substituting these
variables in Eg. (C.50) and using Egs. (C.51) and (C.52) gives

1
Teal + Tess + TagyP(adjust) + (Trep + Tys)P(repair) + I

1
14 [Teatl + Tess + TaqyP@djust) + (Trep + Trss)Plrepair)] -
- B |

P(avalilable) =

1
14(Tq /1) “ (C.54)

From Eq. (C.54), clearly availability approaches unity as I+« and/or as Td-»0. Eq. (C.54) also
shows that availability improves as P{adjust) and P(repair) are minimized.

C.8 Cost Modeling

Calibration Intervals, test decision risks, and availability are parameters that have a direct bear-
ing on the costs associated with operating and maintaining a test and calibration support hierar-
chy. These parameters also affect indirect costs associated with end item quality and/or perfor-
mance capability.

End item quality and/or performance capability is measured in terms of the extent whereto an
end item achieves a desired effect or avoids an undesired effect. These effects can be referenced to
program management considerations, for military or space systems, to end item profitability for a
commercial product or to any measure of end item performance that can be quantified in eco-
nomic terms. Examples of wanted effects may include successful strike of an offensive weapon,
follow-on reorders of a product item, creation of a desirable corporate image, etc. Examples of un-




desired effects may include unsuccessful response to a military threat, warranty expenses associ-
ated with poor product performance, return of products rejected by customer receiving inspection
activities, etc. In each case, the end item experiences an “encounter” (approach of an intended
target, approach of an incoming missile, appearance of an unexpected obstruction, etc.) that re-
sults in a percetved “outcome” (successful missile strike, missile interception, obstruction avoid-
ance, etc.) The effect is determined by the “response” of the end item to the encounter (timely
sighting and ranging, early detection and warning, responsive braking and maneuvering, etc.) The
cost of a given outcome is a variable that is assumed to be known. If an outcome is associated
with a benefit, the cost is expressed in negative dollars.

The analytical methodology developed here provides a means for determining the probability for a
successful or unsuccessful outcome as a function of various technical parameters that character-
ize the test and calibration support hierarchy. The hierarchy affects costs associated with fielding,
selling or otherwise dispatching the supported end ftem, An end item that has been dispatched is
one that has been *accepted” by the end item test system. Therefore, the costs that derive from a
dispatched end item are termed “acceptance costs.” The variables used in modeling acceptance
cost are shown in, Table C. 1. The variables resulting from cost modeling and analysis are shown
in Table C.2. In this table, total annual calibration, adjustment, repair, and support costs relate
to costs incurred from support of a UUT of interest (calibration system, test system or end item,)
Annual acceptance cost applies only if the UUT of interest is an end item.

Key to the cost modeling discussed here is the assumption that the quality and performance ca-
pability of an end item is related to the value of the measurement attribute supported by test and
calibration, Attributes tested before end Item dispatch can conceivably be out-of-tolerance to a
degree that end item performance will be negatively affected. The variables xgq and xy mark the
onset of degraded attribute performance and the point of complete loss of performance, respec-
tively. To relate end item quality or capability to values between these points, the following model
has proved useful in many applications:

1, Ixi< xq
P(success!x) =41— ﬁh?[d‘fi‘—_fdﬁ;-] . Xddxi<xg (C.55)
2(x f =xxq)
0, xy <Ixl,

where P{success | x) is the probability for successful performance of the end item, given that its
attribute value is equal to x. The probability of a successful outcome is given by (see Table C. 1)

P(success) = Pg, I:o Jaop(x)P(success! x)dx . (C.SG)

The pdf faop(x) is obtained from Eq. (C.8) with “AOP” for “true” to show that the end item is used
throughout its test interval in agreement with the random demand assumption:

-X* 1202p

1
Jaop(x) 5w o——-aop e (C.57)

As Egs. (C.48) and (C.49) show, 06a0p depends on opep Or, equivalently, Rpop. These quantities
are, in turn, determined by the accuracy of the test system and the quality of the test and calibra-
Uon support hierarchy.




TABLE C.1

Cost Modeling Variables

Varlable Description Variable Name
End item attribute value corresponding to the onset of Xy
degraded performance

End item attribute value corresponding to loss of function X f
Cost of a given outcome ¢,
Quantity of end items sold or in inventory NUUT
Acquisition cost of an end item unit Cuur

End item spare coverage desired (in percent) SUUT

Probability of a successful outcome, give successful end Ps,
item performance

Probability of an encounter Pe
Hours to calibrate/test H,
Additions/ hours required for adjustments H,
Cost per hour for tes/calibration and/or adjustment C hr
Cost per repair action C,

A B R A A R R R AR R

The acceptance cost for dispatched end items is the product of the cost of a given outcome, the
number of end ilems dispatched, the probability of an encounter occurring and the probability of
unsuccessful end item performance:

Cacc = CyNyurPe[l - Plsuccess)] . (C.58a)
where P{success) is given in Eq. (C. 56,) If Cqec represents a benefit, the appropriate expression is
Cacc = CfNyurPePlsuccess) , (C.58b)

where Cy would be given in terms of payoff instead of cost, The quantity Caee can be
“annualized” by expressing Pe in terms of the probability of encounter per end item unit per year.
Sometimes, it maybe desirable to set P. equal to the probable number of encounters experienced
per end item unit per year. (The reader may note that this quantity may be a function of Nyyr .)

e Sy b Sl .S e A



TABLE C.2

Acceptance Cost Modeling Variables

Variable Description Variable Name
Total annual cost Ctot
Annual acceptance cost Cacc
Total annual support cost Cis
Annual calibration cost Ceal
Annual adjustment cost Cady
Annual repair cost Crep
Total spares acquisition cost Csa

As stated earlier, acceptance cost applies only to the end item. The quantities that follow, how-
ever, apply to any UUT encountered at any level of the test and calibration support hierarchy, Of
these, we first consider costs associated with UUT downtime. UUT downtime results in a require-
ment for replacement spares to have available to cover items submitted for test or calibration.

The number of available UUT spares called for is equal to the number needed to cover the un-

available UUT items multiplied by coverage wanted (spares wanted in stock to cover an out of use
uuT):

NgP(available) = Nyprll - P(avaﬂable)]SUUp'

_ Nyyrll - Plavailable)) S

Ns P(available) '
which becomes, with the aid of Eq. (C.54),
N = w_ (C.59)
The cost to buy these spares is given by
Csa = NSC[M‘ y (0.60)

and the annual cost resulting from the requirement for these spares is given by

CY¥e = C4Csq (c.61)

where Cq is either the annual depreciation cost per UUT item, for private sector applications, or

is the unit rate at which UUT items expire from use and need replacement, in Government appli-
cations.

The annual cost due to calibration or test is given by




Coal = HeCh—UILE (C.62)
where I is expressed in years. The annual cost of UUT adjustments is given by
Cadj = ————HqaChrPladjust) , (C.63)
and the annual cost of UUT repair is

Crep* y-um;;I—ViCTP(repair) , (C.64)

where Pladjust) is given in Eq. (C. 14), P(repair) is given in Eq. (C, 53) and, again, I is expressed in
years.

The total annual support cost is the sum of Egs. (C.61), (C.62), (C.63) and (C.64):
Cis = CL®Y +Coql +Cadj + Crep - (C.65)

The total annual cost, including support and acceptance costs, is given by the sum of Eq. (C.65)
and Eq. (C.58):

Ctot Cgee + Cis . (C.66)

C.9 Multiple Product Testing

At the end of the test and calibration process, lie populations of end items that exhibit various in-
tolerance percentages. As the previous sections have shown, these percentages are controlled by
the accuracy or “integrity” of the acceptance testing process, As was shown earlier, accurate
testing yields high end item in-tolerance percentages and low false alarm and missed fault rates.
In-tolerance percentages, false alarm rates and missed fault rates are obtained through computa-
tion using end item pdfs, as shown earlier.

The pdf, f; (x), of an accepted end item population mathematically characterizes the “quality or
integrity of the population, For example, the in-tolerance percentage of an accepted lot of end
iterns Is given by

L
P(in-tolerance) = J lfe' Spt(x)dx.
Ly

In previous sections, the pdf fj(x) is given by Eq.(C. 10.) Eq. (C. 10) applies to cases in which end
items are subjected to a single test process, During end item production, however, end item test-
ing is often performed tn a sequence of tests, each characterized by its individual test system and
test process uncertainties, The resulting pdf in these scenarios is not Gaussian and Egs. (C. 15)
through (C. 17) are not applicable.

C.9.1  The General Multiple Testing Model

The typical end Item multiple testing scenario uses four stages of end item testing, as shown in
Figure C.5. The first stage involves testing at the component level, followed by board level testing
at the second stage, package level testing at the third stage, and system level testing at the fourth
and final stage. Testing consists of both functional checks to verify that all characteristics of each




component, board, package or system are in working order and tolerance tests to verify that all
relevant measurable parameters are within specification, For the present discussion, only toler-
ance testing will be modeled in what follows.

In considering the testing process shown in Figure C.5, we try to find the resulting pdf fix) which,
as was stated above, characterizes the accepted end item population. Since several levels or
stages of acceptance are involved, this pdf is a quantity that evolves from stage to stage. The gen-
eral model used to describe this evolution ts shown in Figure C.6.

C.9.2 Definitions and Notation

In analyzing the general end item testing model, shown in Figure C.6, the following terms will be
used in addition to those encountered earlier.

L‘y = end item parameter test lmit for the jth test of the ith testing stage

Aper = the region defining acceptable performance I-Lper +Lper) for the end item pa-
rameter

A;] = the acceptance region [-lyt.+1}y] for the end item parameter for the jth test of
the ith testing stage

Ly = performance tolerance limit for the attribute of the test system selected to per-
form the jth test of the ith testing stage

c = standard deviation for the test system and test process present at the jth test o

[ deviation for the test syst d test tat th test of

the ith testing stage
= in-tolerance probability for the end item attribute before testing

in-tolerance probability for the test system parameter used to perform the jth
test of the ith testing stage

Iy = calibration interval for the test system used to perform the jth test of the ith
testing stage

Ay =  the out-of-tolerance rate for the test system parameter used to perform the jth
test of the ith testing stage

Osy = response of the end item attribute to the stress applied to the end item subpop-

ulation passing the jth test of the ith testing stage

pdf for the parameter under test for the end item subpopulation that success-
fully passes-the ith testing stage

Jilx)

C.9.3 Determination of f{x)

Let the value of the end item attribute under test at any point in the testing process be repre-
sented by the variable x. Test system measurements of x are represented by the variable y. Before
testing, the end item parameter is assumed to follow the pdf

Jox) - 7————2’1[00 X /203 ‘
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Ficure C.5 — MuLTipLE Enp ITem TesTing. Testing Of each end item function or parameter
begins at the most elemental level of development and contains the entire manufacturing
process through final assembly. At each stage, UUTS are subjected to Stresses designed to
ensure that all elements of each end item function are performing as intended and are op-
erating Within specified tolerance limits.

At the jth test of the ith testing stage, the distribution of test system measurements of x is given
by

Syn= e e~ /20]

Between tests within each testing stage, the end item is subjected to stress, This stress is as-
sumed to cause x to fluctuate randomly from its pre-stress value, With this assumption, if X' is

the value of the end item prior to stress, and x is the value following stress, the pdf for x following
stress is given by Eq. (C. 18):

l X - r)2
gy(xix)= i e
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Ficure C.6 — THe GENErAL MuLTIPLE TESTING MopEL. Items enter the testing process with
parameter values distributed accordln%(to the pdf fo(x). As nonconforming items are re-
Jected at each step, parameter values take on distributions described by the pdfs fy(xIpass).
Stress (thermal, vibration, etc.) 1s encountered by end items within each stage, Fyoﬂbwmg
stress, parameters are distributed according to the pdfs f; (X).

As stated earlier, the objective of applying the model is the deterrntnatton of the final end item
pdf. In making this determination, the notation will be simplified by using a quantity Gy(x) de-
fined by

t
Gy(x) =j_"g§, Sytuixdy .

The analysis begins by considering the distribution fy(xlipass) for the end item subpopulation
that passes the first test of the first testing stage. Using standard probability theory notation, the
parameter in-tolerance probability for this subpopulation can be written

R)1=P(x e Aperlye Aill
= [“per Ipass)dx (C.67)
~Loper J11(xIpass)dx. .

Invoking Bayes’ first relation, the quantity P(x e Aperly eAfl) is obtained from

P(x € Aper.y € Afl)
Plye Ail) .

P(xe Apelye Al )= (C.68)

The numerator and denominator of Eq. (C.68) are given by




t
P(X_G Aper.ye Al 1)" JAper deA},dy[(x'y)

=, JotHx [y Sy

= [ Jolx)Gri(xax,
per
and
Py € A{ 177 fol0)Gy ) (x)dx .
Substituting these expressions in Eq. (C.68) gives

4 Jo(X)G1(x)dx
P(xe AperlyeAil)= o .
|- JfolG11(Hd¢

Comparison of this result with Eq. (C.67) shows that the pdf for x following the first test is given
by

Gx) (C.69)
" fot0G11(00ag

Next, the first stress is applied. The resulting pdf is obtained from

J11(xlIpass) = fo(x)

J1109° [ a1 1(x1x") fi 1 (xIpass)dx’

_ j:oq, 1{x1x") fo(x")Gy1(x")dx’
= ro61iag

(C.70)

Afler the first test and first stress, end Items enter the second test with parameter values no
longer normally distributed. Aside from this fact, the treatment of the first post test distribution
during the second test is analogous to the treatment of the untested distribution during the first
test, Accordingly, the pdf for the end item parameter following the second test is obtained by in-
spection from the expression for f] j(xipass)in Eq. (C.69):

Gya(x)
" mGeas

J12(xIpass) = J11(x)
Similarly, the distribution following the second stress can be obtained by inspection of the ex-

pression for fj1(x) in Eq. (C.70):

J12(x)= J_:‘Im(x"")flz (x"Ipass)dx”’ .
Continuing in this way, the pdf for the end item after the first stage of testing is given by
G,l!"l (x)

1) " Siny-1(x)

J::,flunl —l(()Gl,nl (()dc .




At each step of the testing process, the pdf for x is assembled from the results of the previous
step, until the final distribution is achieved:

‘ G
100= fy gy 2 )Ny .
[ TN 1GN ny (O

C.89.4 A Simplified Model

For practical purposes, the general model can usually be abbreviated to include only package and
system level testing, shown in Figure C.7. The rationale for this is as follows. Prior to the package
level, testing is done on components and boards that will later be assembled into more complex
structures, i.e., packages and systems. These components and boards are stressed and tested to
ensure that packages and systems are composed of parts that will function as intended. Any de-
viation from nominal performance of a component or board will be reflected in the results of test-
tng of functions er parameters at the higher (package or system) levels, Furthermore, the specific
effect of individual nonconforming components on the performance of an end item’s functions is
difMicult to assess, since specific components contribute to performance in aggregate ways, better
described at the lowest level of abstraction, Moreover, besides being applicable to testing during
the end item manufacturing process, the model shown in Figure C.7 is appropriate for describing
periodic retesting of end items following deployment. This is because periodically returned end
items are lkelier to begin their testing sequences at the package or system level instead of at the
component or board level,

PACKAGE LEVEL SYSTEM LEVEL
TESTING TESTING

Ficure C.7 — THE SiveLirieo MODEL. Boards are assembled into functional units or parame-
ters whose statistical properttes, before E)acka ge level testing, are composites of the properties
of the individual boards. The statistical probability density function of the untested parame-
ter is represented by Jo(x).




C.1 O Measurement Uncertainty Analysis

A prescription is offered in this appendix to aid in the determination of the various standard devi-
ations used in modeling the test and calibration hierarchy. These standard deviations are con-
structed from several uncertainty components listed in Table C .3. In Table C.3,€ P! erformance
limit of the UUT is labeled L’;ZT. and the performance limit of the TME is labeled L;,er .

The coeflicients p;. 1 =1,2,44 o |15, are provided as estimates by persons knowledgeable of the test or
calibration process and associated equipment. Of the uncertainty components, UUT resolution
and TME resolution refer to the coarseness of respective UUT or TME attribute readings. Process
error refers to uncertainties introduced into the test or calibration process by fluctuations in an-
cillary equipment, shifis in environmental factors, etc. Technician error arises from the fact that
different technicians may, under identical circumstances report different measured values for a
given UUT attribute. Rebound error was defined earlier. Shipping error is an estimate of the upper
limits whereto the UUT attribute can be displaced because of shipping and storage.

TABLE C.3
Measurement Uncertainty Components
Uncertainty o Corresponding
Component Definition Standard Deviation
UUT Resolution n +PzL‘,f2rT og”
TME Resolution p3 -t pa L%E o}zME
Process Error ps + pGLYgrr + pngbg“ op -
Technician Error Pg+ Pl ploLg‘e"F Otech
Rebound Error P11 +p121,lgg b
Shipping Error M3+ P14 bggrr + msLT,’L‘,E Os

RN AN

Without more specific information, we assume each uncertainty component supplied is an upper
limit estimate outside which values are not expected to be found, Although we make no claim to
privileged knowledge regarding the cerebral mechanisms by which human minds develop such
estimates, we feel it is safe to regard these components as approximate 3¢ limits. Therefore, the
standard deviation corresponding to each uncertainty component is obtained by dividing the
magnitude of each estimated component by 3. Thus, for example, agur = (UUT resolution) /3.

The component standard deviations 6,3, and og have been encountered. The other components
can be used to determine the test process standard deviation oyy:

2 2
2 _[,UUT TE 2 2




D1 Introduction

The SMPC method derives in-tolerance probabilities and attribute biases for both a unit-under-
test (uum and a set of Independent test and measuring instruments (TM E,) The derivation of
these quantities is based on measurements of a UUT attribute value made by the TME set and on
certain information regarding UUT and TME attribute uncertainties. The method accommodates
arbitrary accuracy ratios between TME and UUT attributes and applies to TME sets comprised of
any number of instruments.

To minimize abstraction of the discussion, the treatment in this appendix focuses on restricted
cases in which both TME and UUT attribute values are normally distributed and are maintained
within two-sided symmetric tolerance limits, This should serve to make the mathematics more
concrete and more palatable. Despite these mathematical restrictions, the methodological frame-
work is entirely general, Extension to cases involving one-sided tolerances and asymmetric at-
tribute distributions merely calls for more mathematical brute force,

D.2 Computation of In-Tolerance Probabilities
D.2.1  UUT In-Tolerance Probability

Whether a UUT provides a stimulus, indicates a value or shows an inherent property, the de-
clared value of its output, indicated value or inherent property is said to reflect some underlying
“true” value. A frequency reference is an example of a stimulus, a frequency meter reading is an
example of an indicated value and a gage block dimension is an example of an inherent property.
Suppose for example that the UUT 1s a voltmeter measuring a (true) voltage of 10.01 mV. The
UUT meter readtng (10.00 mV or 9.99 mV, or some such) is the UUT's “declared” value. As an-
other example, consider a 5¢cm gage block. The declared value is 5em, The unknown true value
(gage block dimension) may be 5.002 cm or 4.989 cm, etc.

The UUT declared value is assumed to deviate from the true value by an unknown amount, Let
Yo represent the UUT attribute’s declared value and define a random variable &y as the deviation
of Yg from the true value. The variable gy Is assumed a priori to be normally distributed with zero
mean and variance g2. The tolerance limits for e are labeled tLg, i.e., the UUT is considered in-
tolerance if-~ <¢g é)Lo.

A set of n independent measurements are also taken of the true value using n TME, Let Y; be the
declared value representing the ith TMEs measurement, The observed differences between UUT
and TME declared values are labeled according to

X(=Yp-Y;,i=1,2...Nn, D.1)

The quantities X; are assumed to be normally distributed random variables with variances g2
and mean gg. Designating the tolerance limits of the ith TME attribute by +L;, the ith TM2




considered in-tolerance if eg - L; € X; S £o + L. In other words, populations of TME measurements
are not expected to be systematically biased, This is the usual assumption made when TME are
either chosen randomly from populations of like instruments or when no foreknowledge of TME
bias is available. Individual unknown TME biases are assumed to exist, Accounting for this bias is
done by treating individual instrument bias as a random variable and estimating its variance.
Estimating this variance is the subject of Section D3. Estimating biases is covered in Section D6.

In applying SMPC methodology, we work with a set of variables r;, called dynamic accuracy ratios
(or dynamic inverse uncertainty ratios) defined according to

n E%il)_ A=12,0. (D.2)

The adjective “dynamic” will distinguish these accuracy ratios from their usual static or “nominal”
counterparts, defined by Lg /L;,1=12,,n. The use of the word “dynamic” underscores the fact
that each r; defined by Eq. (D.2) Isa quantity that changes as a function of time passed since the

last calibrations of the UUT and of the ith TME. This dynamic character exists because, generally,

both UUT and TME population standard deviations (bias uncertainties) grow with time since cali-
brat-ion, Computation of gp and o is described in Section D.3,

Let Py be the probability that the UUT is in-tolerance at some given time since calibration, Using
these definitions, we can write

Py=F(a,)+Fla_)-1, (D.3)
where F() is the distribution function for the normal distribution defined by
Flag) = 1_(as_—¢2/2 (D.4)
2r I—we a.
and where
,’1+2r2 Loi—————zxir‘2
¢ 1+Er[2

a4+ =
+ oo

(D.5)

In these expressions and in others to follow, all summations are taken over i=1,2,-n. The deriva-
tion of Egs. (D.3) and (D.5) is presented in Section D.5. Note that the time dependence of Py is in
the time dependence of a,and a.. The time dependence of a,and ais, in turn, in the time de-
pendence of ;.

D.2.2 TME In-Tolerance Probability

Just as the random variables X1, X2,...,X,, are TME measured deviations from the UUT declared
value, they are also UUT measured deviations from TME declared values, Therefore, it is easy to
see that by reversing its role, the UUT can act as a TME. In other words, any of the n TME can be
regarded as the UUT, with the original UUT performing the service of a TME, For example, focus
on the ith (arbitrarily labeled) TME and swap its role with that of the UUT. This results in the fol-
lowing transformations:




X{=X1-X;
X5 = Xo - X

X{ = "Xi

Xn=Xn-X,

where the primes indicate a redefined set of measurement results. Using the primed quantities,

the in-tolerance probability for the ith TME can be determined just as the in-tolerance probability
for the UUT was determined earlier. The process begins with calculating a new set of dynamic ac-
curacy ratios. First, we set

00 = Oy
of =0}
09 = Oy

o{=0p

o’;l=0n.

Given these label reassignments, the needed set of accuracy ratios can be obtained using Eq.
(D.2), Le.,

r{=0p/0}, 1= 12,.n.

Finally, the tolerance limits are relabled for the UUT and the first TME according to Ly = L; and
Li=Lo.

With P,designating the in-tolerance probability for the ith TME, and substituting the primed
quantities obtained above, Egs. (D.3) and (D.5) become

R =F(a})+F(a’)-1,
and

i 1,02
Xir,

Jrezr? Lot b
1+2ny

ai =
1 %

Applying similar transformations yields in-tolerance probabilities for the remaining n-1 TME,

D.3 Computation of Variances

D.3.1 Variance in Instrument Bias

Computing the uncertainties in UUT and TME attribute biases involves establishing the relation-
ship between attribute uncertainty growth and time since calibration. Several models have been
used to describe this relationship (see Section B.9.)




To illustrate the computation of bias uncertainties, the simple negative exponential model will be
used here, With the exponential model, if t represents the time since calibration, then the cofre-
sponding in-tolerance probability R(t) is given by

R(t) = R(0)e™*t | (D.6)

where the parameter 4 is the out-of-tolerance rate associated with the instrument in question,
and R(0) is the in-tolerance probability immediately following calibration. Note that this form of
the exponential model differs from that given in Section B.9. The form used here acknowledges
that a finite measurement uncertainty exists at the beginning of the deployment period. The pa-
rameters A and R(0) are usually obtained from analysis of a homogeneous population of instru-
ments of a given model number or type (see Appendix B.)

With the exponential model, for a given end-of-period in-tolerance target, R’, the parameters 4
and R(0) determine the calibration interval for a population of instrument attributes according to

_ 1 ‘ R*
T_ _Iln ( . (D.?)

Rearranging Eq.(D.7) and substituting in Eq. (D.6) gives

R(t) = R(O)exp{%ln[ﬁ%—)]} . (D.8)

For an instrument attribute whose acceptable values are bounded within tolerance limits tL, the
in-tolerance probability also can be written, assuming a normal distribution, as

__1 (L -f%/20f
R(t)—pj e d¢ , (D.9)

T[O'b

where og is the expected variance of the attribute bias at time t Equating Eq. (D.9) to Eq. (D.8)
and rearranging yields the attribute bias standard deviation

‘b L

= Y1 1, Ro) ’t_—[‘ ‘] u
3 1 RO

where F~1() is the inverse of the normal distribution function defined in Eq. (D.4.)

(D.10)

Substituting L, T, t;, R,{0) and R;. {=0,1,....n,in Eq. (D. 10) for LT, {,R(0) and R’ yields the desired
instrument bias standard deviations, (The variable t;is the time passed since calibration of the
UUT (&=0) or of the ith calibrator (&=1,2, --, n.))

D.3.2  Accounting for Bias Fluctuations

Each attribute bias standard deviation is a component of the uncertainty in the attribute’s value.
Bias uncertainty represents long-term growth in uncertainty about our knowledge of attribute
values. Such uncertainty growth arises from random and/or systematic processes exerted over
time. Another component of uncertainty stems from intermediate term processes such as those
associated with ancillary equipment variations, environmental cycles, diurnal electrical power
level cycles, etc.




Uncertainty contributions due to intermediate term random variations in attribute values usually
need to be estimated heuristically on the grounds of engineering expectations, In the parlance of
the 1SO/TAG4/WGS3, such estimates are called Type B uncertainties. Youden, for example, pro-
vides a graphical method for qualitatively evaluating contributions from human factors, labora-
tory processes and reference standards. Development of a quantitative method is a subject of cur-
rent research. For now, heuristic estimates are usually the best available. Heuristic estimates
should represent upper bound (i.e., 3-sigma) one-sided limits for process uncertainty magnitudes,
Experienced metrologists can ofien provide reasonable guesses for these limits, If we denote up-
per bounds for heuristically estimated contributions by &,1=1,2,.. -.n, the corresponding stan-
dard deviation is given by

o51=6;/3. ' (D.11)

D.3.3 Treatment of Multiple Measurements

In previous discussions, the quantities X; are treated as single measurements of the difference
between the UUT attribute and the ith TMEs attribute. Yet, in most applications, testing or cali-’
bratton of workload iterns is not limited to single measurements, Instead, multiple measurements
are usually taken, Instead of nindividual measurements, we will ordinarily be dealing with n sets
or samples of measurements.

In these samples, let n; be the number of measurements taken using the ith TMEs attribute, and
let Xy = Yo - Yy be the jth of these measurements. The sample mean and standard deviation are
given in the usual way:

Xy=— ny D. 12)
J_
and

ng

x) . . 13)

The variance associated with the mean of measurements made using the ith TMEs attribute is
given by
"12=°§t+512/"i+"§t'

where the variables op; and og are the long-term and intermediate term attribute bias standard
deviations, respectively, as defined in Section D.3.2. The square root of this variance will deter-
mine the quantities r; defined tn Eq. (D.2.)

Note that including sample variances is restricted to the estlmatlon of TME attribute variances,
UUT attribute variance estimates contain only the terms 02 and 62,. This underscores what is
sought in constructing the pdf f(ep!X). What we seek are estlmates oi‘the in-tolerance probability
and bias of the UUT attribute. In this, we are interested in the attribute as an entity distinct from
process uncertainties involved tn its measurement,

It is important to keep these considerations in mind when the UUT and the ith TME switch roles.
What we are after in that event, is information on the attribute of the ith TME as a distinct entity.
Therefore, the suitable transformations are




0b =0} + 03

2
0i=\/0§1 +312/n1+051

of = \/61270 +s;‘2 /ng+ "go

yo— .2 2 i
"n‘\/"bn+sn/"n+°8n’ (D.14)

Other expressions are the same as are used in treating single measurement cases, The relation-
ship of uncertainty variables to one another is shown in Figure D. 1.

Y,-+1fo§,-+s?/n,- H+ Oy

Y,+05 — \ y -
4
Yi— 05 ITFE;
U
ﬂ"o,,.-

FIGURE D.1 — MeasUuREMENT UNCERTAINTY COMPONENTS. The standard deviation op; Pro-
vides an indication of the uncertainty In the bias of the #h instrument’s attribute. The vari-
able a4 is a heuristic_estimate of the standard deviation associated with intermediate term
random fluctuations in this bias. The variable s; represents the short-term process uncer-
tainty accompanying measurements made with the ith instrument's attribute.




D.4. Example

The proficiency audit problem described in Section 6,4.2 provides an illustrative example of the
use of SMPC. In this example, for simplicity, we set R(0) = 1, and bias fluctuation and process un-
certainties equal to zero. Designating instrument 1 as the UUT, instrument 2 as TME 1 and in-
strument 3 as TME 2, we have Yo = O, Y; = 6, and Yy = 15, Thus
X1=Yo-1
=-6
X2=Yp-Yo
=-15,
and
n=rz=1.

Unless otherwise shown, we can assume the in-tolerance probabilities for all three instruments
are about equal to their average-over-period values. The three instruments are managed to the
same R*® target, have the same tolerances, and are calibrated in the same way using the same
equipment and procedures. Therefore, their standard deviations when the measurements were
made should be about equal, According to Eq. (D.2), the dynamic accuracy ratios are

n=rp=1.
Then, using Eq. (D.5), we get

\/1+(1+1)(10i '6‘15)

1+4(1+41)

ay = %0

V3(10%7)

o’o “

Calculation of the standard deviation og calls for some supplemental information. The quantity
op is an apriori estimate of the bias standard deviation for the UUT attribute value of interest, In
making such a priori estimates, it is usually assumed the UUT is drawn at random from a popu-
lation. If knowledge of the population’s uncertainty is available, then an estimate for og can be
obtained,

For the instruments used in the proficiency audit, it was determined that the population uncer-
tainty is managed to achieve an in-tolerance probability of R*= 0.72 at the end of the calibration
interval. As stated above, we assume we can use average-over-period in-tolerance probabilities for
R(f in this example. With the exponential model, if R(0) = 1, the average in-tolerance probability is
roughly equal to the in-tolerance probability halfway through the calibration interval, Thus set-
ting t = T/2in Eq. (D. 10) yields




10

P enfimen]

10
i F—i(0.92)

10

1,43
=6.97.

Substituting in the expression for as above gives

a _N3(10%7)
T 697
=2.4971.74 ,

Thus, the in-tolerance probability for the UUT (instrument 1) is

Py = F(0.75)+ F(4.23)- 1
=0.77 +1.00-1
=0.77.

To compute the in-tolerance probability for TME 1 (instrument 2), the UUT and TME 1 swap roles.
Using the transformations of Section D.2.2, we have
X{=-X)
=6
X5 =Xo-Xy
=-9

in place of X,and X,in Eq. (D.5.) Recalling that ag = 6g in this example gives

6-9

’

aj =

v

%0

_y3(10%1)
T 6.97
=2.4970.25.

Thus, by Eg. (D.3), the in-tolerance probability for instrument 2 (TME 1) is

R = F(2.24) + F(2.73) -1
=0.99+1.00-1
= 0.99.

In computing the in-tolerance probability for TME 2, the UUT and TME 2 swap roles, Thus

X{=X)-Xo
=15

X5 =-Xg
=9,

Using these quantities in Eq. (D.5) and setting og = 6p gives




a} =2.49+1.99.
Thus, by Eq. (D.3), the in-tolerance probability for TME 2 (instrument 3) is

By = F(4.47) + F(0.50)-1
=1.00+ 0.69-1
= 0,69.

Summarizing these results, we estimate a roughly 77% in-tolerance probability for instrument 1,
a 99% in-tolerance probability for instrument 2, and a 69% in-tolerance probability for instru-
ment 3, As shown earlier, the instruments in the proficiency audit example are managed to an
end-of-period in-tolerance probability of 0.72, They are candidates for recalibration if their intol-
erance probabilities fall below 72%. Therefore, the decision to result from this exercise would be
to send Instrument 3 in for calibration,

D.5 Derivation of Eq. (D.3)

Let the vector X represent the random variables X, Xs.::+, X, obtained from n independent TME
measurements of co, We seek the conditional pdf for co, given X, that will, when integrated over
I-Lo.Lg). yield the conditional probability P. thatthe UUT is in-tolerance. From basic probability
theory,

Tteoix) - LXK1£0) (e)

.15
70) (b-19)
where
£2
f(so)— exp| -—95 | . (D.16)
\/27500 20,
Since the components of X are s-independent, we can write
J(Xleo)” f(X1leo) S (Xalep) - f(Xnlep) | (D.17)

where

X —¢
T(Xleo) J—Utp[ Xi-£0)%| {=12.n. (D.18)

Combining Egs. (D. 15) through (D. 18) gives

| 2 2
f(Xleg)f(eg) = Cexpl—L| 0 4 5 Xt~ 20)
2| o2 o

= Cexp{—;fpo-[eg + Ertz(X( - 80)2]|

2\2
= Ce—G(X)exp 1+2r ___szlr . D. 19
203( 7)o 1+3r2 019




where C is a normalization constant. The function G(X) contains no &g dependence and Its explicit
form is not of interest in this discussion.

The pdf f(X) is obtained by tntegrattng Eq, (D. 19) over all values of &g, To simplify the notation,
we define

a= |1+ £r2 (D.20)
and
2
p2X0L .21
1+2"t ’

Using Egs. (D.20) and (D.21) in Eq. (D. 19) and integrating over gq gives

7130 = o0 g~ (e0~P)" /208,

- Ce~GX) */foo , (D.22)
Dividing Eq. (D.22) into Eq. (D. 19) and substituting in Eq. (D. 15) yields the pdf
2 2
fleo!X) = 2"‘ ¢~ (e0=B)’ /208 (D.23)

[}

The in-tolerance probability for the UUT is obtained by integrating Eq. (D.23) over [-Lg, Lgl. With
the aid of Eq. (D.5), this results in

o Lo -a?(eo-B)2 /203
Py= 7—'*2”00 ‘[‘Lo e 0d£o

E A
=F(a.) - F(-a,)
= Fla_)~-[1 - F(a4)]
= F(a,) + F(a_) -1,
which is Eg. (D.3.)

D.6 Estimation of Biases

Obtaining the conditional pdf f(e!X) allows the computation of moments of the UUT attribute
distribution, Of particular interest is the first moment, or distribution mean, The UUT distribution
mean is the conditional expectation value for the bias €. Thus, the UUT attribute bias is esti-
mated by

Bo = E(ep!X)

=" eosleoiX)deo |

(D.24)




Substituting from Eq. (D.23), and using Eq. (D.21) gives

2
_IXi (D.25)

_1+2f'

Similarly, bias estimates can be gotten for the TME set by making the transformations described
in section D.2.2, for example, the bias of TME 1 is given by

EXIrIZ
B =ElellX)=—+L_ . (D.26)
1+Eq

To exemplify bias estimation, we again turn to the proficiency audit question, Using Egs. (D.25)
and (D.26), and recalling that oo =01 = 03, we get

Instrument 1 (UUT) bias: fo=-2-13__
1+(1+41)
‘e p_6-9 _
Instrument 2 (T1 1) bias: §, = 5 =-1
Instrument 3 (TI 2) bias: B, = 153+9 =8

If wanted, these bias estimates could serve as correction factors for the three instruments, If used
in this way, the quantity 7 would be added to all measurements made with instrument 1. The
quantity 1 would be added to all measurements made with instrument 2. And, the quantity 8
would be subtracted from all measurements made with instrument 3.

Note that all biases are within the stated tolerance limits (z1 O) of the instruments, This might en-
courage users to continue to use their instruments with confidence. However, recall that the in-
tolerance probabilities computed in Section D.4 showed only a 77% chance that Instrument 1 was
in-tolerance and a lower 69°A chance that instrument 3 was in-tolerance. Such results tend to
provide valuable information from which to form a cogent baseline for making judgments regard-

ing instrument disposition, Such a baseline does not tend to emerge from considerations of at-
tribute bias alone,

D.7 Bias Confidence Limits

Another variable that can be useful in making decisions based on measurement results is the
range of the confidence limits for the estimated biases. Estimating confidence limits for the com-

puted biases g and .0 -, i=1,2,,n, means first determining the statistical probability density
functions for these biases. From Eq. (D.25) we can write

n
Bo = ECtXi (D.27)
i=1
where
r2
Cy = . (D.28
{ I:é;? )




With this convention, the probability density function of Bo can be written,

JBo) ™ f(Eeixp)

“f (Zy) (D.29)
where

Vi =X . (D.30)

Although the coeflicients ¢;, i= 1,2, -+ \n, are in the strictest sense random variables, to a first ap-
proximation, they can be considered fixed coefficients of the variables X, Since these variables
are normally distributed (see Eq.(D. 18)), the variables y; are also normally distributed. The
proper expression is

1 ~lv-m) /20y,

Jly)= Groy, (D.31)
where
Oy, =Ci0 (D.32)
and
N =CeQ - (D.33)

Since the variables y; are normally distributed, their linear sum is also normally distributed:

e~ Evi-1?/20°

1 ~(Bo-nP/20%
2no

= J(Bo). (D.34)

where
o= 202 (D.35)

Vi
and

n=Xn . (D.36)

Equation (D.34) can be used to find the upper and lower confidence limits for fp. Denoting these
limits by/3+ and g7, if the desired level of confidence is p x 100VO, then

p= 2 SBo)dpo.
or

Js TBo)dBo =1 p) /2= [*© f(Bo)dpo.

Integrating Eq. (D.34) from pg to « and using Egs. (D.35) and (D.36) yields

and




F[Eég—n]=(l+p)/2.
Solving for g} gives

BS=n+ oF“(“Tp). (D.37)
Solving for the lower confidence for fg in the same manner, we begin with

1% 1(orapo=1-p) /2,
or

o~
F 107=(1—p) /2. (D.38)
From the relationship I.
e
o c

: £o ™
=1-pl Q).

Eq. (D.38) becomes

4 —
1-F -—Q—J"’:"’):u—p)/z
-

APt —aipy2 -
. % 1

and
By =n- GF"(I—;—E)- (D.39)

From Eq. (D.34), ‘the parameter 5 is seen to be the expectation value for Sp. Our best available
estimate for this quantity is the computed UUT bias, namely B itself, We thus, write the upper
and lower confidence limits for g as

-1f1+
Bg =PBo toF 1(——2-3)- (D.40)
In like fashion, we can write down the solutions for the TME biases f;,1= 1,2, . . . ,n:
4 b
Bf =B+ o'F-1 @9 (D.41)
where

’ 2 2
c =W,2Ct o; , (D.42)




and

Gl (D.43)
" I} '

The parameters r{ in this expression are defined as before,

To illustrate the determination of bias confidence limits, we again turn to the proficiency audit
example. In this example,

00 = 0y = 6) = 06{ =6.97

R=r=1
By Egs. (D.28) and (D.34),
q=c{=l
3 1 ]
and
o= é—ofw%o%
2
= 3 o'o
= 3,29

Substituting in Egs. (D.40) and (D,41) yields

T -1(1+p
BE = po +(3.29)F ( . )
Bf =P + (3.29)F‘1(1—+§’—’)

By =B2 +(3.29)F~114p.,
Suppose the desired confidence level is 95%. Then p = 0,95, and
F-1 1P _p-l(g75)
( 2)
=196,

3.29F"1 (__% =6.4.

Since B =-7, A= -1, and By = +8, this result, when substituted in the above expressions, gives,
with 95°A confidence,

and

-13.4 <9 <-0.6
-7.4 <B1<5.4
1,6</72s 14,4.




E | Measurement System Modeling

Whether measurements are active or passive, whether they consist of readings of measurands
external to a measurement system or whether they consist of reference outputs generated by in-
ternal measurands, they can be analyzed using the basic measurement model,

MEASURAND
VALUE

. MEASURED

X

FIGURE E.1 — Basic Measurement MooeL. Measured values are responses of measurement
s¥stems to measurand values. Responses of individual system stages are a function of a set
of characteristic parameters, the measurand value, and the values of other system re-
Sponses.

MEASURAND
VALUE X

FIGURE E.2 — MopeL STAGES. Separate stages each of whose output is a function of the
measurand value and of outputs developed by other stages.

In developing a measurement system model, the measuring system is viewed as being made up of
a set of separate stages each of whose output is a function of the measurand value and of outputs
developed by other stages, The output of each stage is referred to as the “response” of the stage,
denoted Y(p,.X,), 1= 12,-,n. The components of the vector p, are the parameters that charac-
terize the ith stage, and the components of the vector X, are the inputs to the #th stage of the
system, These inputs include responses of the other stages of the system and, possibly, the mea-
surand. For example, in the accompanying figure, X, =(X'Y3'Y6)'




The components of the vector Y are the responses of all the stages of the system. The notation
f(el|e 2 Isused throughout this document. It reads “f of e, given e,.” So. the notation Y(ppx)
indicates that the response of the ith stage of the system sfunctlonally dependent on the pa-
rameters of that stage and on the other system responses y! (the measurand x being considered
the zeroth response, i.e., X = Yp).

The parameters of a given stage, indicated by the components of the vectors p;,i=1,2,+. -.n are
usually those quantities that comprise the specifications for the stage. For example, for an ampli-
fier stage, they would include such characteristics as gain, linearity, common mode voltage,
noise, etc. They are the governing parameters that characterize the response of the stage to input
stimuli. To simplify the treatment, some of the parameters may even represent external stimuli
other than Inputs from other stages. For example, one parameter may represent ambient tem-

perature, another may represent mechanical vibration, still another may represent stray emfs,
etc.

The vectors X,, 1=12..¢ ,nare arrays that indicate the responses of other measurement system
stages that influence the response of the tlh stage, In a series system, for example, each stage re-
sponds to the output of the stage before it, Consequently, each vector consists of a single compo-
nent:

X,=x X,=Y, X,=Y, . .* X, =Y,
The system responses for a series system are

Y, = ¥y(py.x) Y, - Yp(p,.1y) c3 = Ya(pay) ... Y.~ Yn(pn'Yn—l) ,
and the system output is

- y(¥p) = ¥, (EN

E.2 Measurement Error Modeling

The output y(Y]x) of the measurement system differs from the measurand by an error
e(Y]x) = y(Ylx) - x . (E.2)

This error is a function of the individual responses of the measurement system and of the errors
in these responses. This functional relationship is developed using a Taylor series expansion de-
scribed later in this Appendix, For systems whose component errors are small relative to the out-
puts of the stages, the expansion can be terminated at first order in the error components,

In most cases, the output of the system will be the output of the nth stage, For these systems, the
measurement error is given by

£(¥}x) = z[ayl)‘+i[ }( ) (E.3)

where each error component g, is expressed in terms of the errors of other system responses and
of the errors of its characterizing parameters:




Y, g 9y, a
=Y =t e+ | =L |e{py) - (E.4)
: E([‘Wk] , J}—-:l[apy)( 0

The quantity mis the number of components of the parameter vector for the #th stage and py is
the ith component.

E.2.1 Series Systems

To illustrate how these expressions are used, consider the series system shown in the figure
below. The system consists of two stages with linear outputs

YrPaYia+ P2 1 =12 .

MEASURAND MEASURED
VALUE VALUE

—x Ly, =YY, Y,14

R

Ficure E.3 — Two-Stace SERIES Svstem. The output y 1s a measurement of the input x.
The error in y is a function of the errors of the responses of the stages S,and s,.

Denoting the ideal, error-free first stage output as Y1° and assuming zero measurand error®, we
write

Y\"phx+py

= [Pfl + 8(1’11)]’” P2 +€(Pya)
i szlx + pfz)+ xe(pyy) " &(py)
=yt xe(py)) + €(Py2)

Y, Y,
=YL +—Lé(p,,)+~Lep
Y o (p1y) EP (p12)

_vo
=Y} +¢ .

Note that this result is given by the Equation (E.4), with i = 1. (For the first stage, k = O, and
€, =&(x)=0 .) The output of the second stage is, to first order in the error terms,

8

Although the measurand is the quantity being measured and, by definition, 1s the sought after, error-free
“true” value — the assumption & = O will not always be made. More will be said on this later.




The final expression of error (the system error model) in terms of the errors in the parameters of

Y =P\ + Pae 4

= [pgl +€(p21)](ylo + 81) + Pgs + €(Pga)

= Py + P We(bay) Pog - €(P2o)
(P&h"-’r Pao ¥ p(z)lal + Ylos(pm)-s(pzz)

Y. aY. Y.
-EYO .__15 +—Rg +—2=2 g
2% 3p,  + Pa; (p2l) a2 (P22)

n

the system stages is obtained by combintng terms from the expressions for Y;and Y,:

oY, X21x)=82

J

Y, | 2Y; oY, Y. Y.
————Z[——ll—e(p“)+-——12—£(p,2)J _2‘8(1’21) 'a;j;‘:(pzz)

aY, 0Y; 8}’ ayY, aY oY.
= ___1_ _1_ 2
Y, dpy, e(pu)+ oY, dp, e(pig)+ E &(p21) *"apl” &(p22) -

Generalizing from this result, the system error model for any series measurement system can be
written to first order in the error terms as

where

e(ulx) = £(Yh)

o & Y )oY,
- Y 9%,
tz 1(::1—:!1 Yy 1)3Py (py)

J:
&< oy
i<0J=1\ °Py ( ”) (E.5)
A
oY Y, ] Y, .
oY _ ) (E.6)
opy (kgu Y1 ) 9Py

E.2.2  Series Parallel Systems

Developing an error model for a series parallel system is analogous to developing one for a series
system, The only difference is that one or more of the stages may have inputs from more than one
stage,
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FIGURE E.4 — SERIES-PARALLEL SYSTEM. OneOr more of the stages may have inputs from
more than one stage.

With thts in mind, the linear response model that was used in developing the series system error
model is modified to read

my-1
Y,: ZpyYy +ptmlo i=1.2. mm, n ’
=

where Yy is the fth input to the tth stage. Consider the three-stage system in the figure above, It is
easy to show that, with appropriate notation, the error in the output of each stage can be written

g = Y -+ k+%“’() i=1,2,-n. (E.7)
k=inputs ‘9 Yi op,

E.2.3 Nonlinear Responses

In the foregoing, equations have been derived that apply to modeling errors in systems with linear
responses, To first order in the errors, the equations also apply to systems where responses are
not necessarily linear, i.e., where the response Y(p,. X,) is not necessarily a linear function of the
components of the vectors p, and X,. As an example that supports this assertion, consider the
response function

~(PigYi-14Pi3)

Y;=pye t Dy

Expressing each term as a true value plus an error gives

- P2+ (Pt2)’ pi %
Y- [P+ s(pu)]e e }WS Ptg})l4+s(p‘4)

0
(p2v2) *piy ~[ploei +Y816(P12)*8(P13)J 0

[pu +&(py ]e Pia + &Py ) "

The second exponential term can be approximated, to first order in the errors, by

e-[P?zet-l Y 1e(piz)+e(Pis)]

=1- ppe ;- Yie(pp) - 5(1’;3) .

Substituting this approximation in the expression for Y, gives




0,0 , 0
‘0 -(Ptht-ﬁPts) o

Y =pye + Py
=Y +¢,
where
p&v2,+p2 (p2v0. 4 p0 (0700
e e (m 1-1 ma)( ,,)—pﬁp?z (P12 i-1 pm)et_l—pﬁ}’&e ( 0v?, 13)( R
~Pue rlerrks) (pts)* &(pia)
Y, Lf 9y, JY,
= 3)’,!1 €yt api e(Pu)+ (Pm) 3p;£(p‘3)+§E‘:£(pl4)
2y,
axq : ‘-1+Z . ( ) -

These expressions are the same as those used in error model development for linear response sys-
terns. It can be readily demonstrated, that, to first order in the error terms, the error modeling
approach taken here is valid for any combination of polynomials and transcendental functions.
The only stipulation is that the responses of the stages of the measurement system be differen-
tiable with respect to their parameters,

E.2.4 Large Error Considerations

It should be stressed that the foregoing development applies to cases where the various error ex-
pressions can be written to first order in the error terms, i.e., to cases where the magnitude of
each error in a given response is small relative to the magnitude of the response,

For cases where this is not so, error terms to second or higher order may need to be retained. The
validity of the order of an approximation is situation specific. It depends not only on the relative
magnitude of each error to its associated response term, but also on the precision to which an
analysis can be justifiably carried out,

There are no systematic rules for deciding on the order of an error analysis model,
Identifying the specific order of approximation is an art that improves with experi-
ence. In most cases, however, the first order models given above are applicable.

E.3 Small Error Theory

Consider the output of a stage S,, given an input Y;. If the stage response is characterized by a
mathematical function fand a set of parameters py. J=1,2, + ~-,m;, then, in general,

Y =J (Y1) (E.8)

In addition to those parameters that characterize the tth stage, the vector p includes components
that represent environmental and other measurement process error sources, independent of the
input ¥,. Under nominal (i.e., “error free”) conditions, the input is Y, and the response is written
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0 0.0
Yul:f(Yt -Pt) .
Hence, the error in the output Y, is

0
€ =YY

= f(Y:-m)—f(Yf’-P?) ‘

(E.9)
If we expand fin a Taylor series, we get
_ oy.{.af oy, W o 0
Vou= (309843 ) (130)+ 35 (o rl)
1(Pf o 1Y %S 0 0
+=| —5 | {Y;-Y, - Py1=D; i KDis — oo,
2(33’,2)0( ) 22‘2‘[@”%(]( = PisKPue =Pl (E.10)

where the input Y,° is the nominal input to S, and the zero subscript indicates that the vector p is
at its “true” value,

If the deviation from true for p is written

S(Pu) Piy-Piy* (E.11)

and, recalling that f(Y.p{) = ¥;,. then the expression for ,,, becomes

) 1{ 92
Yt+l"’l+l'*(a£) € +§[5%‘] 8(2+"'

Yoo
my af 1 my my 82f
25— éPuy)ts —— | €§p)e\p E, 12
Jzﬂ(apu]o ( u) 2J=lk=l(3pl'13ptk A ( u) (Pysc )+ (E, 12)
Since ¢, =Y, - Ygl ., We can write
AU, 1) e
£, = aY, £ +§ 3‘7‘2— oe, +oe
m mym 2
af 1 °f
w32 efp, )23 S L (E.13
j:l[apl. j]o ( "J) 2;%5::1[9131, jap(,k]oe(pl.J)g(pl.k)+°°' . )
The deviations from nominal egpyz are the errors in . If these errors are small, the Taylor series
can be truncated at the first ordér terms with the resuiits that
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E4 Example

Consider the measurement of an object of length [ using a device whose “sensor” is a metal ruler.
The ruler’s length is a function of temperature, as is that of the object, The governing equation is

L=L0+ &, (T~ Tpo)+ s (T-Ths) -

where
L = the system output value for 1
Lo = the measured or “sensed” value for 1
k,, = the recorded value for the temperature coefficient of the measurand

K,s = the recorded value of the temperature coefficient of the ruler
T = the observed ambient temperature

T.o = the nominal temperature for the measurand

Twso = the nominal or calibration temperature for the ruler.

Note that in this application, we wish to extrapolate the length of the measurand to some nominal
operating temperature. This effect of the ambient temperature on this value is analogous to the
effect of a preceding measurement system stage. Consequently, the above formalism is robust
enough to accommodate the situation, If extrapolation to a nominal temperature were not impor-
tant, the last term in the equation for L would not be included. .

Preliminaries aside, we now expand each term as a true value plus an error component

- _ 0
Ly= lo+g, x'm=%m+exm Kms = Kms+&c . T=Ty+ep L=l+¢g,

so that

L=1,+¢, +(x?n +E, )(To +€&p —Tm'o)+(xg‘s + € )(TO+ G-p'Tms_o)

=l+8, .

Multiplying out and retaining error terms to first order gives

l+g=1ly+ "'r(:i(To - Tm_o)+x21s(To "'Tms.o)

+ o+ xgsr + (To - T,,,_o)e +KD Ex + (T. - Tmo)s

Km Kms !

The first three terms on the RHS comprise the true length L So, the error in the output of the
measuring system is

0 }
£ = 810 + Km€r + (To Tm.O)gx

0
m T Kpobp+ (To-Tms.o)exms' (E, 15)

Now we will use the Taylor series method to see if we get the same expression. We first identify
the function fin Eq. (E.8)

f(Yth) =Lo+ Km(T" Tm.O) + "ms(T“ Tms.O) ’

so that we can identify the relevant parameters as




Y, =L0 Py Kk, P2 Kms Pa=T,
and, hence,
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and
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Substituting in Eq. (E. 14), the first order Taylor series expansion error equation becomes
Enm=§
)
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Comparison of this result with Eq. (E.15) shows both resulis to be the same.




F1 Introduction

This appendix describes a methodology that yields unambiguous results that can be applied di-
rectly to the assessment of measurement uncertainty. The methodology specifically addresses the
following stages of the uncertainty analysis process:

Statistics Development — Construction of statistical distributions for each measurement
error component, Error components are identified in the error model.

Uncertainty Analysis — Analysis and assessment of measurement uncertainty,
The methodology for developing error models is presented in Appendix E.

Practicality of the Methodology — The intent of this section is to describe an uncertainty analysis
methodology that has practical application to the real world, This may imply that the methodology
is simple or easy to use, If so, the implication is unintentional, Some of the mathematics tend to
involve multiple terms, subscripts and superscripts and may appear a little daunting at times, In
this section, the term “practical” is meant to mean usable or relevant to user objectives, such as
equipment tolerancing or decision risk management. Simplicity and ease of use will follow once
the methodology is embedded in user-interactive workstation applications, where the math can be
largely hidden from view.

Departure from Tradition — Uncertainty analysis methodologies have traditionally been confined
to techniques that are conceptually simple and straightforward, These methodologies have been
developed in accordance with the available computational capabilities of the decades before desk-
top workstations became widespread, Unfortunately, while conventional methodologies are often
easily understood, they are frequently ambiguous, restricted, and, sometimes useless or even
dangerous, In contrast, the methods described in this section are unambiguous, fairly general
and lead to a better understanding of the nature and extent of uncertainties surrounding a given
measurement situation,

Accessibility to the Engineering Community — The complexity of the methodology of this section
can be made available to the engineering community through dedicated software written for to-
day’'s powerful desktop computers. What may have been considered to be hopelessly difficult in
the past can now be made almost trivial from the standpoint of the analyst. Moreover, with the
evolution of the desktop computer’'s graphical user interface (GUI), using a complex methodology,
such as is described herein, can even be enjoyable,

With these considerations in mind, it maybe argued that the issue of uncertainty analysis needs
to undergo a paradigm shift with a view toward achieving the following objectives:

« Develop uncertainty analysis methodologies that are relevant to scientific inquiry, stan-

dards calibration, parameter testing, production template development and other aspects
of the marketplace.

« Implement these methodologies in menu-driven platforms with graphical user interfaces,




To explore in detail the issue of methodological relevance, it will be helpful to review some back-
ground on why measurements are made and how analyzing uncertainty leads to understanding,
interpreting, and managing measurement results.

F.1.1  Why Make Measurements?

A variety of reasons for making measurements can be stated, We make measurements to discover
new facts, verify hypotheses, transfer physical dimensions, make adjustments to physical at-
tributes, or obtain information necessary to make decisions, The varied reasons for making
physical measurements are found in the typical high-tech product development process, Each
phase of this process involves the transfer of measurement information across an interface, as
shown in Figure F. 1, The process involves:

o R&D, where new data are taken and hypotheses are tested

« Prototype development, where dimensions are transferred, attributes are adjusted. or
modified and decisions are made

« Design, where prototyping experience leads to decisions on optimal specs and allowable
tolerances

«  Production, where molds, jigs and templates transfer physical dimensions
«  Testing, where, decisions to accept or reject parts and assemblies are made

« Usage, where customer response to product quality, reliability and performance is fed
back in the form of sales activity, warranty claims, legal actions, publicity, etc.

FIGURE F.1 — LateraL UNCERTAINTY Proracation. Measurement results are transferred
from stage to stage in the typical product development process. Measurement uncertainties
accomﬂany each measurement transferalL The appropriateness of measurement accuracies

and other characteristics are “fed back to modify and refine production process approaches
and parameters.

Each product development interface shown in Figure F. 1 is supported by a measurement assur-

ance infrastructure embodied In a test and calibration hierarchy. The basic hierarchy structure is
shown in Figure F.2.

In a typical hierarchy, testing of a given end item attribute by a test system vyields a reported in-or
out-of-tolerance indication, an adjustment if needed, and a begtnning-of-period in-tolerance prob-
ability (measurement reliability). Similarly, the results of calibration of corresponding test system
attributes include reported in- or out-of-tolerance indications, attribute adjustments and begin-
ning-of-period measurement reliabilities. The same sort of data results from calibrating the sup-
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porting calibration systems and accompanies calibrations down through the hierarchy until a
point is reached where the “unit-under test” (UUT) of interest is a primary calibration standard,

END ITEM

TEST SYSTEM

CALIBRATION SYSTEM 1

FiGure F.2 — VErticaL UNCERTAINTY PROPAGATION. Measurement accuracy requirements
flowdown from the end item or product through the measurement assurance support hierar-
chy. The uncertainty of calibrated and/or tested attributes propagates upward.

F.1.2 Why Estimate Uncertainties?

All physical measurements are accompanied by measurement uncertainty. Since measurement
results are transmitted laterally across development process interfaces and vertically across sup-

port hierarchy interfaces, uncertainties in these results also propagate both laterally and verti-
cally.

Whether we use measurements to verify hypotheses, construct artifacts, or test products, we
should know how good our measurements are, Within the context of each application, this is
synonymous with knowing the confidence with which our measurements allow us to make deci-
sions, adjust parameters and so on,

A perhaps pessimistic, yet practical, way of looking at the situation is to say that we want to be
able to assess the chances that negative consequences may result from applying knowledge ob-
tained from measurements. It can be shown that the probability for negative consequences in-
creases with the uncertainty associated with a measurement result. Thus, managing the risks in-
volved in applying measurement results is intimately linked with managing uncertainty.

Optimizing the management of measurement decision risks involves (1) linking specific values of a
physical attribute with outcomes that may result from using the attribute and (2) estimating the




probability of encountering these values in practice. If high probabilities exist for unknowingly
encountering attribute values associated with negative consequences, we say that our knowledge
of the attribute’s value is characterized by high levels of measurement uncertainty, If the reverse
is the case, we say that measurement uncertainty is not significant.

If our approach to uncertainty analysis aids in estimating the probability of encountering at-
tribute values associated with negative consequences then we have a workable, Le., practical,
measurement uncertainty analysis methodology.

F.2  Estimating Uncertainty — Conventional
Methods

Conventional uncertainty analysis methodologies ordinarily employ the following steps:
(1) Identify all components of error,
(2) Estimate statistical or engineering variances for each component. 10
[3) Combine variances to achieve a total uncertainty estimate.
(4) Estimate statistical confidence limits, based on the total estimate,

Statistical confidence limits are usually determined by assuming normally distributed error com-
ponents. Where Type A estimates are available, Student’s t-distribution is invoked,

F2.1 Methodological Drawbacks

While step one is always advisable, certain ambiguities and improprieties arise in the way that
conventional methods address steps 2 through 4. This is due to three main drawbacks of conven-
tional methods,

1. Lack of an Uncertainty Model — The first drawback involves the failure to gauge the relative
impact of each component of error on total uncertainty. Some error components may contribute
more significantly than others. Without an uncertainty model, based on a rigorous error model,
arbitrary and unwieldy weighttng schemes tend to be used whose applicability is often question-
able.

How uncertainties combine differs from situation to situation. Each situation requires its own er-
ror model, Moreover, in developing an uncertainty estimate based on an error model, it may be
that more than just a simple extrapolation from the model will not be sufficient. For example, if
the appropriate error model is a linear combination of error components, it does not always follow

that total uncertainty can be determined from a linear combination of corresponding uncertainty
component variances,

“Conventional” as used herein refers to the methodology provided in NIST Technical Note 1297 and in 1S0/
TAG4 /WG3, Guide to the Expresslon of Uncertainty tn Measurement.

10

Such variances are referred to as Type A and Type B uncertainties, respectively. As a reminder, Type A esti -
mates are those that are evaluated by applying statistical methods to a serfes of repeated observations and
Type B estimates are other evaluations-+wbjecttve and otherwise. It should not be assumed that evaluations
of repeated observations are necessarily superior to evaluations by other means, Type A evaluations of stan-
dard uncertainty are not necessarily more reliable than Type B and that in many practical measurement situ-
ations the components obtained from Type B evaluations may be better known than the components obtatned
from Type A evaluations.
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Without a defined uncertainty model, most conventional approaches involve either a linear com-
bination of component uncertainties (standard deviations) or confidence limits, or a linear combi-
natlon of component variances. Linear combinations of standard deviations or confidence limits is
U-advised in virtually all cases.!' Such combinations lead to what are often called “worst case”
uncertainty estimates. They could also be called “worst guess” estimates.

Part of the problem stems from the fact that linear combinations of variances arising from various
error components are not relevant except in cases where the error model is linear and all error
components are statistically independent (s-independent). Moreover, even if s-independence per-
tains, linear combinations of variances are not generally useful unless all error components follow
the same sort of statistical distribution and the distribution is symmetrical about the mean. .

To get around these difficulties, the expedient of imagining that each error coOmponent is normally

distributed is often employed. This is sometimes justified on the basis of the central limit theo-
rem.

2. Misleading Variances = The Normality Assumption — The second drawback of the conventional
approach is its reliance on statistical variance as the sole measure of uncertainty, Working with
variances alone can produce misleading results, This is illustrated by considering the distribu -
Uons shown in Figures F.3 and F.4. Figure F.3 shows a population of product attribute values

before and afler test screening. Since testing has rejected most of the non-conforming attributes,
the post-test distribution’s tails are pulled in toward the center.

Probability Density

Post-lest
-4— (distribution

ow 0.544
Pre-tast
distribution
o= 1.000

| 1
-2.00 -1.60 -1.00 -0.60 0 0.60 1.00 1.60 2.00

UUT Attribute Value

FiGURE F.3 — PRE-TEsST Vs, PosT-TEST ATTRIBUTE PoruLATIONS . Typical statistical distribu-
tions for attribute values prior to and following test screening. The shaded areas represent
probabilities for out-of-tolerance attributes. The pre-test in-tolerance percentage is approxi-
mately 68%, 12 The post-test curve corresponds to testing with a measuring system uncer-
tainty (standard deviation) of approximately ten percent of the pre-test population uncer-

tainty. As expected, the out-of-tolerance probability i1s lower after test screening than before
test Screening.

1l This is not the case for linear combinations of systematic measurement bias when signs are known and
magnitudes can be estimated,
12 A not uncommon figure with products that are tested periodically as part of their in-use maintenance cycle.




From Figure F.3, it is evident that, although the pre-test population is normally distributed, the
post-test distribution of product attribute values is non-normal. Accordingly, treating post-test
product attribute values as being normally distributed could lead to erroneous inferences about
their uncertainty. 13

This can be appreciated by considering the statistical standard deviation of post-test population
values, Given the variance in the pre-test population and the accuracy of the test system, the
standard deviation for the post-test distribution turns out to be approximately 0.544. If we were
engaged in sampling post-test attribute values as part of a process control procedure, for exam-
ple, we would likely obtain an estimate centered around this value.

If we were to assume a normal distribution for the post-test population, a sampled standard devi-
at-ton of 0.544 would correspond to an in-tolerance percentage of about 93% (see Figure F.4.) In
contrast, the actual in-tolerance percentage is over 97%. When evaluating out-the-door quality
levels, the difference between 93°A and 97?40 in-tolerance can be astronomical, An erroneously low
93% level can result in unnecessary breaks in production, an unscheduled verification of parts

and production machinery, and a reevaluation of the production process — all of which could be
avoided by not assuming normality for the product attribute distribution,

Probability Density

Post-test
normal distribution
approximation

0=0.544

Post-tast
-4— distribution

¢ =0.544

I ,
200 -1.50 -1.00 050 0050 1.00 1.50 2.00

UUT Attribute Value

FIGURE F.4 —POST-TEST DISTRIBUTION NORMAL APPROXIMATION. The post-test distribution is
contrasted with a normal distribution with equal variance. Not only are_the out-of-tolerance
robabilities (Shaded areas) significantly different, the shapes of the distributions are dissimi-
ar.

3. Ambiguity of Application — The third drawback with conventional methods is that they produce
results that are not readily applicable, The use of conventional methods typically yields an esti-
mate of the total variance of measurement values. What then to do with this variance? True it can
be used to calculate confidence limits (again, assuming normal distributions of measurements),
but confidence limits are not always useful, In general, by themselves they constitute weak deci-
sion variables.

13 In this context, attribute uncertainty may be equated with the probability that a product item drawn at
random from the post-teat population will be in-tolerance,
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The relationship of statistical variances or confidence limits to probabilities associated with nega-
tive consequences, referred to earlier, is often ambiguous. Unless a statistical variance enables” us
to infer the statistical distribution that it characterizes, its function 1s primarily ornamental,
Without knowledge of this distribution, we are at a loss to determine the probability that parts
manufactured by one source will mate with parts manufactured by another, or the probability
that calibrated test systems will incorrectly accept out-of-tolerance products.

F.2.2 Methodology Requirements

Given these observations on conventional methods, it appears that what is needed is an uncer-
tainty analysis methodology that directly generates probability estimates for attribute values, ‘I'he
methodology should not be restricted with regard to statistical distributions of error components,
nor to assumptions of s-independence. Moreover, it should yield results that can be used in man-
aging measurement decision risk. Such a methodology is referred to as the practical method.

F.3  Estimating Uncertainty — The Practical Method

The practical method employs an analysis procedure that differs from that followed by conven-
tional approaches, The procedure it follows is

(1) Define the measurement mathematically,

(2) Construct an appropriate total error model,

(3) Identify all components of error for a given quantity of interest.

(4) Determine statistical distributions for each error component,
« Identify all error sources for each error component

« Obtain technical information from which to identify the statistical distribution appro-
priate for each error source

« Construct a composite statistical distribution for each error component based on its
source distributions,

(5) Develop atotal error statistical distribution from the distributions for each error compo-
nent,

(6) Compute confidence limits, expectation values, measurement decision risks, etc. using
the total error statistical distribution,

F.3.1 The Error Model

The error model should describe how error components combine to produce the total error of a
measurement result, Consider the particle velocity measurement example of Section 4, In this ex-
ample, velocity (v) is computed from measurements of time (9 and distance (d). We first define the
measurement with the familiar relation v=d/t. If errors are represented by the symbol & then, if
errors in time are small compared to the magnitude of the time measurement itself, the appro-
priate error model is




=2(1+eg/d)1-e/1)
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and

where
& =veg/d and g, =-ve, /L .

Note that the same expressions result from using the conventional Taylor series expansion for
small measurement errors (see Appendix E):

e = (Q)g +(£2)8

v \ad)d \at )"
In general, if the determination of a given quantity is based on a set of n measured attributes, the
total error of the quantity can be expressed in the functional relationship

Epotal = Epotat(€1+€2+1€n)
=£1+£2 +"'+£n . (F' 1)

As with all measurement errors, each of the variables ¢, is composed of both process errors e
(physical discrepancies between measurement results and true measurand values) and errors of
perception e, (discrepancies between measurement results and the perception of these results):

4 F.2
£ s{ep.e) i=12:..n. (F.2)

Steps four and five of the practical method involve determining the statistical distributions for

each error component and using these component distributions to form a statistical distribution
for the total error. Returning to the particle velocity example, the statistical distribution for g, can

be obtained from a joint distribution for g and &,. Representing this joint distribution by the
probability density function (pdf) f(s,.ez). the pdf for ¢, can be found using

J(e,) = J:dslf(sl.sv -g). (F.3)

In cases where the error components are s-independent, as is commonly the case, this expression
becomes

J(e,) - f.odelfl(el)fz(eu 4 s (F.4)

where fi() and f,() are the pdfs for the individual error components ¢ and &,. In this example,
these pdfs are” related to the pdfs for distance and time according to

and
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The remainder of this section focuses on the construction of pdfs for individual error components.
As Egs. (F. 1) through (F.6) indicate, once these pdfs are obtained, a pdf for total measurement er

ror can be developed. Using the total error pdf, a description of total measurement uncertainty
becomes possible.

To illustrate, suppose that errors in distance are normally distributed around the distance mea-

surement with standard deviation ¢y, while time measurements are uniformly distributed within
+*70f the time measurement, Then

1 ~(eq-d 2/2(‘:2
fcd(ed)=:]2n.o.de (ea ) d |

and
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ey (8‘)c{, otherwise .

Egs. (F.5) and (F.6) yield
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270,
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0. otherwise .
Substituting these pdfs in Eq. (F.4) gives
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where the function @ is the cumulative normal distribution function defined by
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F.3.2  Accounting for Process Error

Process error e, arises from errors in the measurement system (e,), from the measuring envi-
ronment (e,), and from the set-up and configuration of the measurement system (e):

e, = eplemsec.e,)
=e,s teeteg . (F.7)




In Eq. (F. 7), the subscripts ms, e and s refer to “measuring system”, “environment”, and “set up”,
respectively. Measurement system and environmental process errors are broken down into a bias
(b) and a precision error (8. Set-up error is conceived as constituting a bias only:

€ms =DPps + Ems
e, =b, +¢,
es=by . (F.8)

In discussing given measurement situations, the value of the measurand (attribute being mea-
sured) will be denoted x and the measured value (measurement result) will be labeled y. Thus the
system measures the value x and returns the result y. A measurement result returned by the
measuring system can be described by a statistical distribution which is conditional on both the
measurand’s value and on the masuremnt process errors. Such a statistical distribution is de-
scribed by the “conditional” pdf flylx, e:‘:) This function is read “f of y given x and e,,.” It repre-
sents the probability of obtaining a measutement result y, given a value x and a process error e,
In a typical measuring situation, the process error e, is not known (nor is the value x), and the
measuring individual or pther “perator” (such as an automated control system) will not be able
to obtain the function f%xxe [j;explicitly, Instead, what could be attempted is allz.imaia)of a

J}- The

corresponding function ‘sf(y|xJtihat is an “average” or “expectation value” for flyx. e,
le to

probability density function f(yjx) is obtained by averaging over ranges of values-
ems+ € and e, (the sources of e,). The averaging process is described in Section F.4,

cces

Obtaining Information about e,. e, and e, and constructing the functional form of f(ylx) is ac-
complished in the structured process described in Section 4 and Appendix E. Briefly, the process
consists of extracting all known engineering and other technical knowledge about the attribute
under consideration and the measuring system and environment, In some cases, access to test
and calibration history data bases is also involved, Experience with a prototype test and calibra-
tion management decision support system suggests that the process of constructing f(yjx) can
be implemented in a user-interactive computer workstation environment. '

F.3.3  Accounting for Perception Error

Once a measuring system returns a result, the result is perceived by the operator. This perception
is usually subject to error. Perception errors arise in a number of ways. For example, in reading
an analog meter, errors due to discrepancies between the operator's vantage point and the nomi-
nal meter reading position may arise (parallax errors). In reading a ruler, weighing device or digi-
tal voltmeter, errors due to discrepancies between the measurand's value and the measuring sys-
tem’s nominal scale or readout points often occur (resolution errors). The reader can readily
imagine other examples.

Thus, the perceived or “reported” result may differ from the result y returned by the measurement
system. These differences are assumed to be distributed around the value of y and are said to be
conditional on this value. Thus, denoting the perceived result by the variable z, this distribution
is given by the function f(zly). If the pdfs f(y|x) and f(zly) can be determined, then the distri-
bution of perceived results around the value of the measurand can be constructed, As one might
suspect, this pdf is denoted f(z}x).

B see Castnﬁg . “Navy Analytical Metrology RD&E," Navwy Metrology Research & Development Program

. H.
Corgenenoe eport, Dept, of the Navy, Metrology En ineerinlg Center, NWS, Seal Beach, Corona Anr&eg,_ March
1988, and cCastrup, H., “Calibration Requirements Analysis System, ~Proceedings of the 1989 N Workshop

and Symposium, Denver, July 1989.




F.3.4  Measurement Uncertainty Estimation

The pdf f(z]x) provides a description of the probabilities associated with obtaining perceived or
reported values z, given that the value being measured is x. Both measurement process errors
and perception errors influence the characteristics of f(zx).

F.3.4.1 Determination of Confidence Limits for z

Estimating statistical confidence limits in the measurement of a quantity is a major facet of
conventional uncertainty analysis methods. As discussed earlier, most conventional methods
(which assume normal error distributions) conclude by forming normal or Student’s t confidence
limit estimates based on measurement variance.

The practical method takes a more versatile tack by employing the pdf .f(zx) directly rather than
by merely focusing on one of its parameters (.e., the variance]. This permits uncertainty estima-
tion in cases afficted with non-normally distributed errors, Unlike conventional methods, statisti-
cal confidence limits for z are obtained through integration of f(z}x) directly. This does not in-
volve the usual process of attempting to base confidence limits on some multiple of the standard
deviation in z.

F.3.4.2 Estimation of the Measurand Value x

The practical method can also be used to estimate values for the measurand X based on the
measurement z, the process error e, and the perception error &, This feature is unavailable with
conventional methods.

F.3.4.3 Determination of Confidence Limits for the Measurand

In addition to estimates of the measurand value, the practical method provides a prescription for
obtaining upper and lower bounds that can be said to contain the measurand value with a given
level of statistical significance. This is another feature that has been previously unavailable.

F.3.4.4 Management of Measurement Decision Risks

As stated earlier, if we can estimate the probability of encountering attribute values associated
with negative consequences, then we have a practical uncertainty analysis methodology, one
application of such estimates is the determination of consumer and producer risk. Consumer and
producer risk can be determined through the use of f(z}x) and the a priori distribution for x,

J(x).

F.3.5 Conclusion

Because of its ability to unambiguously determine measurement uncertainty and to enable the
effective management of this uncertainty, the practical method is decidedly superior to conven-
tional methods,

Conventional methods require less mathematical effort, but do not yield results that are generally
valid. Moreover, the practical method, by working directly with error source distributions, does
not require the development of techniques for combining uncertainties per se, Consequently, it
avoids philosophical difficulties that have chronically plagued conventional uncertainty analysis
methodologies and have constituted a stumbling block to progress in this area,




The proliferation of desktop computing capability throughout industry has removed the primary
obstacle to implementing complex mathematical methods in the work environment. Hence, there
are no overriding practical reasons why the practical method cannot be put to use by scientific
and engineering personnel, Some additional work is required, however, to bring this to fruition,
Future efforts are principally needed in the areas of error model development and construction of
error source distributions.

F.3.5. | Constructing Error Models

The development of applicable error models requires engineering knowledge of how measure-
ments are made and knowledge of the sensitivity of measurement parameters to sources of error.
Constructing error models based on this knowledge would involve supplying information to a
user-interactive desktop application. The desktop application would then develop an appropriate
configuration analysis model describing the measurement process and setup, Once a measure-
ment configuration model is constructed, the appropriate error model follows directly.

F.3.5.2 Constructing Source Distributions

Once error sources are identified, their respective statistical distributions need to be determined.
For some error sources, such as measuring system error, these distributions can be developed
from engineering knowledge of ranges of values accessible to measurement attributes and from
the results of audits or tests or from calibration history. The construction of other distributions
requires the application of knowledge gained from experience (e.g., testing or calibration) with at-
tributes of interest,

F.3.5.3 Generalization of the Mathematical Methods

The methodology illustrates many of its concepts by obtaining results in closed form or in the
form of integral equations. Implementation of the methodology does not require that this be done,
Interfacing the basic methodological approach with off-the-shelf mathematical analysis software
is sufficient to employ the methodology in a completely general way, without restrictions concern-
ing error models employed or corresponding spurce distributions.

F4  Construction of Component pdfs

This section addresses the construction of pdfs for the components of error that combtne to make

the total error of Eq. (F. 1). If the joint pdf for component errors is f(e,.sz.---.e,,). then the pdf for
the total error is given by

“ e | (F.9)
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Each of the error components is a function of both process errors, arising from various facets of
the measurement process, and errors of perception, arising from the perception of measurement
results, Both process errors and errors of perception are discussed in this section in some detail,

Given a functional form for the joint distribution, it can be constructed from knowledge of the in-
dividual pdfs of the error components. The construction of each component pdf involves several
steps:




Process Error
« Development of a process error model for each error component

+ Development of a pdf describing the distribution of measurement results, given spe-
cific process error component values

« Determination of the expectation value for the measurement results pdf.
Perception Error
« Development of a perception error model

« Development of a pdf describing the distribution of perceived measurement values,
given a specific measurement result

« Determination of the expectation value for the perceived measurement values distri-
bution,

Section F.5 shows how pdfs constructed using this procedure are employed to estimate mea-
surement uncertainty limits, measurand expectation values and measurement decision risks,

F.4.1 The Process Error Model

From observed measurement results, we make inferences about the value of a given measurand
and about the uncertainty in our knowledge of this value. To develop a methodological framework
for making such inferences, it is helpful to view the measurand as representing some deviation
from a nominal or target value. 15 In the present discussion, deviations from nominal are treated
as measurement biases or errors whose description can be accomplished by constructing pdfs
that represent their statistical distributions. Knowledge of these distributions is acquired through

measurement, tempered by certain a priori knowledge of their makeup and of the uncertainties
surrounding the measurement process.

Whether the measurand is an element of a derived quantity (such as distance is an element of
velocity) or stands alone as the quantity of interest, deviations of ils true value from nominal are
referred to herein as “error components,” Errors inherent in measurements of these components
are labeled process errors,

From Egs. (F.7) and (F.8), process error is given by:

(F,10)

€, =bp+b, +bs + £, +E,

F.4.1.1 Development of the Measurement Results pdf

Let the variable x represent the deviation from nominal of a measured quantity (i.e., the error
component of the quantity). Development of the pdf f(ylx) for results produced by the measuring
system begins by viewing the measurement result within the context of a given set of process
errors. The pdf is written

f(mx'ep) = f(ylx'bms'be'bs‘ems'se) ’ (F.11)

15

Examples of such nominal values are the length of a yardstick, the volume of a quart of milk, and the weight
of a four-ounce sinker.




F.4. 1.2 Determining the Expectation Value for the Measurement
Results pdf

The pdf f(ylx) Is found by averaging the error sources in Eq. (F. 11) over their respective distri-
butions,

General Case — The general expression for perforrntng this average is

TG Jrfe lbee, e,

prooess errors

= J:,J_:J:,J:odbmsdbedbsdsmsdeef(ep)f(ylx'bms'be'bS'ems'ee) . (F. 12)

s-independent Sources — If the error sources are s-independent, then the joint pdf j(ylx.ep) is
the product of the pdfs of the source distributions:

S(ep) = S (brss) 7 (D) S (b5)S (ems ) (€c). (F.13)

With s-independent error sources, Eq. (F. 12) can then be solved in a straightforward manner. The
order of integration is usually unimportant. For example, we might first consider measurement
uncertainty due to random fluctuations in the measuring environment, These fluctuations are
accounted for by averaging Eq. (F. 12) over the variable e,:

S (Db Brs) = [ e, S (€0 ) S (UlXpns b b absre) -

The other error sources are averaged tn the same way.

F.4.2  The Perception Error Model

Once the measurement result y is obtained, it is perceived by the cperator to have the value z,
The distribution of z around y, described by the conditional pdf f(zly)can usually be determined
by engineering analysis,

F.4.2. | Determination of the pdf for Perceived Measurement Values

Using Eq. (F. 12), the pdfs f(zly) and f{ylx) can be used to determine the pdf for observed
measurements of the value of the measurand:

1(#) =[S () S (wbe)y |
=Ty [de,s(zu)s{uxe,) . (F.14)

Eqg. (F. 14) describes a pdf for observed measurements taken on a given measurand value X, Prior
to measurement, the available information on this value consists of knowing that the measurand
attribute was drawn from a population of like attributes whose values are distributed according to
some pdf f{ x). In many instances, sufficlent a priori knowledge is available on this population to
enable an approximate specification of the population's distribution prior to measurement. To
illustrate, suppose the measuring situation is product acceptance testing, In this case, a priorl
knowledge of f{x) can be obtained from design and manufacturing considerations and from
product testing history data.




Armed with an a priori pdf f( X), the expected distribution of observed measurements is given by
00 F. 15
@)= [ f(alx) s 5
where f(z]x) is given in Eq. (F. 14).

F.4.3 Inferences Concerning Measurand Values

From a measurement or a set of measurements, we can infer what the most likely distribution of
values for the measurand x might be, This is the distribution that could lead to obtaining the per-
ceived values z from measurements of x. Of course, to be precise, the measurand’s value Is usu-
ally a fixed quantity, not a distribution of values, However, this quantity is unknown, In forming
an estimate of its distribution, what we are really trying to do is determine probabilities for incre-
mental ranges or neighborhoods of values that contain the measurand value.

The pdf f(x]z) for the distribution of values of x, given the observed measured values z, is
obtained from the expression
(F. 16)
J(de) = A () -
The pdf f(z|x)is given in Eq. (F. 14) and the pdf f( z) is computed using Eq. (F. 15). The a priori
pdf f(x) is determined as described in the previous section. Eq. (F. 16) will be used in Section F.5

to determine confidence limits for x and to estimate the most probable value for x, given a per-
ceived measurement z.

F.4.4 Example — Normally Distributed s-Independent Sources

For s-independent error sources, Eq. (F. 13) is substituted into Eq. (F. 12), If all error sources are
normally distributed, performing the integration yields the result

F. 17)
= 1 -(y—X)2/20§ (
S(ylx) mo—pe *
where
of, = a;‘;ms + aﬁe + o;‘;s + a%m; oge . . 18)

If errors of perception are normally distributed, as is the case with those that stem from random
cognitive processes (such as parallax errors), the pdf f(zly) can be written

0?.19)
1 zy?redd,

f(z|y) 27(0'80 €

where the variable g, IS the (random) perception or “observation” error. Substitution of Egs. (F. 19)
and (F. 17) in Eq. (F. 14) yields

(F.20)
. 1 -(z-x)? /202
J(zlx) 727;;9 "
where
02 =040l . (F.21)




For normally distributed measurand values, the a priori pdf J( X} is (assuming zero Population
bias)

(F.22)

1 e-—x2/2d§ )

0= e,

Usling this expression with Eq. (F.21) in Eq. (F. 15) gives the expected distribution of measured
values:

17 2 (F.23)
— et A
f @)= B, °
where
02 =0 +0> . (F.24)
Combining Egs. (F.23), (F.22) and 0?.20) in Eq. (F. 16) gives
_ o —(z—x)2/2o,2n -—x2/2d§ —22/203
f(XIZ)—m- e e e
1 ~x-p2?i20d,
B 72750,42 : : (F.25)
where
1
p=——=3 (F.26)
1+(0n/0y)
and
Oz JBo,, . (F.27)

From Egs. (F. 17) through (F.21) it is obvious that the component pdfs obtained using the forego-
ing procedure could be calculated by recognizing that, if the error sources are normally dis-
tributed, the component distributions are also normal with variances equal to the sums of the
variances of the error sources. This is the familiar RSS result found in many treatments on un-
certainty analysis. Note that the conditions for its validity are that error sources be both s-inde-
pendent and normally distributed.

For such situations, the statistical distribution construction procedure described
above is pure overkill. The procedure becomes more relevant (practical) in cases
where one or more error sources are not normally distributed.

F.4.5 Example — Mixed Error Source Distributions

Consider, for purposes of illustration, a case where all error sources are normally distributed ex-
cept for perception error. An example of such a case is one where perception uncertainty is due to
random fluctuations in the least significant digit of a digital device readout, In using the device,
the operator obtains a perceived value z. If there are k significant digits following the decimal,
then the limits of uncertainty due to the least significant digit can be expressed according to

y=zp, ,




where p, =5 x 1971 .

The measuring system readout informs the operator that the measurement result is somewhere
between z - p, and z +p, With uniform probability. The conditional distribution that applies to
this uniformly distributed perception error is

1 Y-p <z<sy+ (.28)
—_— -— <z< p
S(2ly) = 2P ¥ k
0, otherwise,

Substitution of this pdf in Eq. (F.20) yields

z+py ~(y-x)% /205 dy

- 1
J(2lx) sz_pk

1 Z-X+p, z—x;p
= ') - -tk ||, .
ZPk[ [ %p ] [ %p H 29

where the variable ¢, is defined in Eq. [F. 18). The function @ is the Gaussian cumulative
distribution function,

To obtain the pdf f{ z), rather than plugging Eq. (F.29) in Eq. (F. 15), it is more convenient to
substitute Eq. (F. 14) in Eq. (F. 15) and perform the integration over first x then y

1@)=["_1(zh)s(x)ax
= [T ax[" dy s(zl)f (ube)S (%)

- 2—“,: [ ay [ ax s ()

2-py -
e (5) o)

where ¢, is now given by
af - Oﬁﬂff ] (F.31)

The construction’ of the pdf f(x]z) follows the same procedure as with normally distributed com-
ponents. Using Egs. (F.22), (F.29) and (F.30) in Eq. (F. 16), the pdf f(x{z) can be written

JL(Zx)f(x)
o) Ty
= I:q{z___ﬁﬂ(.]_ q{z— X =Py ﬂ 1 e-leza,%
o, o, )|o(zpc.0,N2m0, ’ (.32)
where o, is defined in Eq. (F.31) and
¢(2.p¢.0,) a{ s, ) d{ s, ) . (F.33)




Comparing Eq. (F.32) with Eq. (F.25) shows that, if even a single error source is non-normal, the
resultant pdf may be substantially different in character than if all sources are normally dis-
tributed.

F.5 Applications

F.5.1 Estimating Measurement Confidence Limits

Convent-tonal methodologies calculate statistical confidence limits for measurements by inferring
these limits from computed measurement variances, Alternatively, using the practical method,
statistical confidence limits for observed measurements can be estimated directly using the pdf
JS(zlx). For a (1- a) x 100% confidence level, the appropriate expressions are

%: j_"l J(z|x)dz , (lower limit) (F.34)
and

.g=j;f(z|x)dz _ (upper limit) (F.35)

F.5.2 Estimating Measurand Values

In making measurements, we are often primarily interested in ascertaining an estimate of the
value of the measurand and in obtaining some confidence that this estimate is sufficiently accu-
rate to suit our purposes. Extension of the foregoing methodology enables meeting this objective,

In making this extension, we employ the pdf f(x|z) to obtain a statistical expectation value for X,
given a perceived measurement result z, The relevant expression Is

(xlz)=[" xf(x|z)ax . | (F.36)

F.5.3  Estimating Confidence Limits for x
The conditional pdf f(x|z) can be used to find upper and lower bounds for a neighborhood of
measurand values that contains the value of the measurand with a specified level of confidence. If

this level of confidence is {1-a) x100%, then the confidence limits L, and L, for x are found by
solving

3= Sidzax

= [2S(eax (F.37)

F.5.4 Estimating Measurement Decision Risk

Consumer and producer risk are two of the most powerful indicators of measurement decision
risk, Consumer risk is defined as the probability that measurements of out-of-tolerance attributes
will be perceived as being in-tolerance, Producer risk is defined as the probability that measure-
ments of in-tolerance attributes will be perceived as being out-of-tolerance, Both variables are
useful indicators of the quality or accuracy of a measuring process.




If the variable A denotes the acceptable (in-tolerance) range of attribute values and its comple-
ment A denotes the corresponding range of out-of-tolerance values, then consumer risk (CR) and
producer risk (PR) are calculated according to
CR= P(Z e AXe Z)
=P(ze A)- P(ze A,xe A)

=[,az f(z) - [ dx],dz f(2}x)1(x) * (F.38)
and

PR=P(zeAxeA)
=P(xe A)-P(ze A,x e A)

=[,dx S(x) -, dx], dz.f(zhx) S (x) - (F.39)

F.5.5 Example — Normally Distributed s-independent Sources

The pdfs for normally distributed s-independent sources will be employed in Egs. (F.34) through
(F.39) to estimate measurement confidence limits, measurand bias, confidence limits for this bias,
and consumer and producer risks accompanying measurements,

F.5.5. | Measurement Confidence Limits

Substitution of Eg. (F.20) in Egs. (F.34) and (F.35) gives the (1 - a) X100% confidence limits for
observed measurement z:

L=x-0,0"'(1-a/2),
and

L, =x+om<b'l(l—a/2) ,
or, alternatively,

x~0,0 (1-a/2)<z<x+0,07 (1-a/2) . (F.40)

The operator &~ () is the Inverse cumulative normal function, and the measurement standard
deviation o,, is defined in Eq. (F.21),

F.5.5.2 Measurand Bias Estimate

By substituting Eq. (F.25) into Eq. (F.36), the most likely value for the measurand, given the per-
ceived measurement result z, turns out to be

(x|z)=pz “. (F.41)

Note that, since > 1 (unless o,, = O), the magnitude of the maximum likelihood estimate of x is
larger than the magnitude of z, This can be understood by recalling that the variable x Is being
treated as a deviation from nominal, and noting that normally distributed measurements tend to
regress toward nominal. With these considerations in mind, it can be anticipated that the maxi-
mum likelihood estimate of the true deviation from nominal would be larger than the perceived or
measured deviation from nominal.




It should be pointed out that the process of estimating a maximum likelihood value for an at-
tribute involves both measuring- the attribute and making a priori statements about its distribu-
tion. If, in the development of Eq. (F.25), a non zero mean value had been specified in the a prior
distribution of x, then the resultant maximum likelihood value would have been centered around
the non zero mean value (Le., away from nominal).

F.5.5.3 Measurand Confidence Limits

Upper and lower confidence limits for the measurand are obtained by substituting f(x|z) from
Eq. (F.25) in Eq. (F.37). The result is

Bz~ ox‘zdf’ (—% Sx<Pz+ oxizdfl (— %) i (F.42)

F.5.5.4 Consumer/Producer Risk

To simplify the discussion, assume that the acceptance region for attribute deviations from nomi-
nal, represented by the variable x, is symmetrical about zero, i.e., that A=[-L L]. From Egs. (F.38)
and (F.39), consumer risk and producer risk are given by

CR=P(ze A)-P(ze Axe A), (F.43)
and

PR=P(xe A)-P(zeAxecA). (F.44)

The component parts of these relations are easily calculated. From Eq. (F.23),

P(ze A)=2d>[ Oi)-l , (F.45)
\ Z

where o, is defined in Eq. (F.24). From Eq. (F.20), the joint probability for both z and x lying
within Ais given by

PlzeAxeA)=[" dzf" axf(zlx)f(x)

= lox[¢[£ﬂ]+¢(1f_x)_l]e—xzfzo% *

2n O O (F.46)
where o, is given in Eq. (F.2 1). Finally, using Eq. (F.22) yields
L
P(xeA)=2<b(—-—~) -1, (F.47)
Ox

Equations (F.45) and (F.46) are substituted into Eq. (F.43) to get an estimate of consumer risk,
Equations (F.46) and (F.47) are substituted Into Eq. (F.44) to get the corresponding producer risk,

F.5.6 Example - s-independent Error Sources with Mixed
Distributions

The example for cases involving mixed distributions considered here is one in which perception
errors are untformly distributed, and errors from all other sources are normally distributed.




F.5.6.1 Measurement Confidence Limits

The same procedure is used to estimate confidence limits for mixed distribution error sources as
for normally distributed error sources, For uniformly distributed errors of perception, the lower

and upper confidence limits can be obtained from
&~ [ f(eboyaz
= [P dzf” dy 1(zl) 1 (ukx)
= 2 U S f)ae sel) + [}y S ()2 e (el

ol H{BBE o 52)
1

- o {lascx)? 1202 _e'(Ll"Pk"‘)Z/z"?ﬂ , (F.48)
and
5=1 S(ex)az
= ., dz["_dus(zlu) s (uix)
Lo+ + ° *

= L:_::dy S(ylx) jj; ?* az f(zy)+ LQ . ayf(ylx)fj_ ,’,’:dzf(zly)
B e e

. 757 [e—(lqwk—x)z/%% _ e-(Lz—Pk—x)z/“%“ ) (F.49)

Solving for L, and L, from Eqgs. (F.48) and (F.49) requires the use of numerical or graphical meth-
ods,

F.5.6.2 Measurand Bias Estimate

For the present example, the expectation value for the measurand is obtained from

(xlz) - [ x f(xz)adx

e J(E@R)S)
o=y

. 7(17) [x5eax| s(zly)r(ulz)ay

=y e e[ x ) e

Using Egs. (F. 17.), (F.22), (F.28), (F.30) and (F.31) and integrating gives



oIn. v

(x|2) = V270, 0(2.p,.0,) - (F.50)
where
. (F.51)
YE———3% .
1+ (op / ox)

F.5.6.3 Measurand Confidence Limits

Upper and lower confidence limits are calculated for this example by numerically or graphically
solving the following expressions for L; and L,

r( (o (F.52)
PR W K EVR IN R
2 ¢(zpo N2mo =l T o L 9
and
a 1 - (F.53)
_—= [i)
* ¢ z,p.0, V210, ILzL

F.5.6.4 Consumer/Producer Risk

As with the example of normally distributed error sources, assume that the acceptance region A
in Egs. (F.38) and (F.39) is symmetrical about zero, Le., A = [-L, L}. Using Egs. (F.22), (F.29) and
(F.30) yields the expressions

L (F.54)
P(xe A)= 2(1{——] -1,
GX

P(zeA)= j [ (“Pk] (z‘;ﬂﬁﬂdz. (F.55)

and

' _1/2p; L
P(ZG A.XEA)—WI_L

—x- 20,2
XJL [ [z x+ka q)[z ;( pkﬂe-x /202 N
% p (F.56)

Contrasting Egs. (F.55) and (F.56) with Egs. (F.45) and (F.46), respectively, shows that applying
the assumption of normality to cases with mixed error component distributions may compromise
the validity of measurement decision risk management.




F.6 Nomenclature

The following_are terms and variables used in the discussion of the practical method. The
definitions pertain to the usage of these terms and variables in this discussion and do not
necessarily reflect their general usage within given fields of study.

ATTRIBUTE — A measurable parameter or function.

CONFIDENCE LIMITS — Limits which are estimated to contain a given variable with a specified probability. .

DISTRIBUTION — A mathematical expression describing the probabilities associated with obtaining specific values
for a given attribute.

ERROR COVPONENT —If an attribute is a function of one or more variables, the deviation from nominal of a each
variable is an error component .

ERROR MODEL — A mathematicalexpression describing the relationship of an error to its error components,
ERROR SOURCE —'A variable that influences the value of an error component.

EXPECTATION VALUE — The most probable value of an attribute or variable.

MEASUREMENT DECISION RISK — The probability of an undesirable outcome resulting from a decision based on
measurements.

MEASUREMENT RELIABILITY — The probability that an attribute is in conformance with stated accuracy
specifications.
POPULATION — All items exhibiting a given measurable property.

PROBABILITY DENSITY FUNCTION (pdf) — A mathematical expression describing the functional relationship between a
specific value of an attribute or variable and the probability of obtaining that value.

STATISTICAL VARIANCE — The expectation value of the square of the deviation of a quantity from its mean value. A
measure of the magnitude of the spread of values adopted by a variable.

s-INDEPENDENT — Statistical independence. Two variables are said to be s-independent if the values adopted by
one have no influence on the values adopted by the other,

TOTAL ERROR — The total deviation from nominal of the value of an attribute,

€otal Total error.

g The ith error component of the total error.

‘P Measurement process error. Error due to the measuring system, environment and setup.

em Error due to the measuring system.

€, Error due to the measuring environment.

€, Error due to the setup and configuration of the measuring system.

bms The part of measuring system error that remains fixed during a given measurement or set of
measurements.

Ems The part of measuring system error that varies randomly during a given measurement or set

of measurements.

be The part of measuring environment error that remains fixed during a given measurement or set
of measurements.

€, The part of measuring environment error that varies randomly during a given measurement
or set of measurements.

Synonymous with e,.

X The true value of the deviation from nominal of an attribute being measured,




Y

J(ulx)
f (2ly)
J(2lx)
J(xlz)
f(x)
f(2)
L,

L,
(xlz)

CR

PR
P(ze A

P(x« A)

The value returned by the measuring system for a measurement of x.

The value of a measurement perceived or observed by the operator of the measuring system.
The pdf for obtaining a measured value y from a measurement of x.

The pdf for perceiving a measurement result z from a measured value y.

The pdf for a measurement result z being perceived from a measurement of x.

The pdf for an attribute having a value x given that its measurement s perceived to be z.
The a priori pdf for attribute values prior to mea.. urement.

The pdf for perceived measurements taken on an attribute population.

Lower confidence limit.

Upper confidence limit.

The most probable value for an attribute being measured, given that its perceived measure-
ment value is 2.

Consumer risk.
Producer risk.

The probability that measurements of an attribute will be perceived to be in conformance
with stated specifications.

The probability that an attribute is in conformance with specifications prtor to measurement.

P(ZGA.XG A) The probability that an attribute is in conformance with specifications and is perceived to

()
o7'()
o

be in conformance with specifications.

The cumulative normal distribution function.

The inverse of ®(-).

The standard deviation for measurement process errors.
The standard deviation for errors of perception.

The standard deviation for perceived measurement results.

The standard deviation for perceived measurement results for measurements taken on an
attribute population.

The standard deviation for the estimated distribution of true attribute values that is most
likely to produce a perceived measurement result z.

One half the magnitude of the maximum range of perceived values that can contain a measure-
ment result.

-




G.1 Introduction

The following example is fairly detailed in its identification of error sources and development of
mathematical expressions. This is because the adage “garbage in garbage out” is especially rele-
vant in error analysis, Small omissions or mistakes in identifying and specifying error compo-
nents and in defining an error model can lead to significant departures from reality in the final
analysis,

In the past, such departures were not always taken seriously, since the result of an error analysis
ordinarily led either to highly conservative compensations or corrections in system design applica-
tions, or to excluded risk uncertainty statements intended to provide subjective “warm fuzzies” or
similar effects of little concrete utility for measurement interpretation or evaluation,

With the advent of measurement decision risk methods, this situation has changed, Measurement
uncertainty has emerged as an essential element in the computation of risks involved in making
erroneous decisions from measurement results,

In developing expressions for measurement uncertainty for use in measurement decision risk
analysis, it is evident that simply quantifying an overall system standard deviation is not suffi-
cient. Instead, a mathematical expression of the statistical error distribution is required, The de-
velopment of such distributions is described in Appendix F,

Once an attribute bias distribution is specified, it can be employed to determine confidence limits
for bias values, In this way, a bias error is treated statistically as a random variable, This is justi-
fiable on the grounds that the instrument was drawn randomly from a population of like instru-
ments whose individual (and unknown) biases take on a distribution of values that can each be
assigned a probability of occurrence.

It should be remarked that this practice is regarded by some as being too risky or
speculative. Critics of bias distribution estimation usually prefer that the uncer-
tainty limits bounding the attribute’s bias be such that essentially no values can
be found outside them, This approach is not recommended for the simple reason
that it establishes bounds that would be applicable under highly unlikely circum-
stances, Le., instances where biases are equal to extreme values. Moreover, if a set
of limits can be said to satisfy this “excluded bias” requirement, then twice these
limits also satisfies the requirement, Indeed, an infinite number of limits can be
fixed that satisfy it. The choice of which to use is entirely subjective.

Wat results from excluded bias uncertainty limits is a “zero information” condition, To be sure,

the bias is likely to be contained within the limits, but the probability of this containment is un-




known. This makes projections of risk or other variables by which measurement error can be
managed all but impossible, -

If a conservative set of bias uncertainty limits is desired, it is far more preferable
to estimate the distribution and employ a high degree of confidence in specifying
limits,

Methods for determining overall system standard deviations are provided in NIST Technical Note
1297 and in ISO/TAG4/WG3, Guide to the Expression of Uncertainty in Measurement, hereafler
referred to as the “ISO Guide.”

In the example, a simple system for converting a time-va~ng analog measurand value to a digital
representation will be analyzed. Since a number of specialized disciplines are involved in the
measurement, some detail will be given with regard to the physical and interpretive processes
that define the Measurement System.

The foregoing steps will be followed In a more or less formal sequence in an example of a digital
temperature measurement system, (This system was previously described in Section 4.) It should
be mentioned that the sequence of steps need not be strictly adhered to. For instance, it maybe
preferred to develop an error model, based on the system model, prior to and as a means to iden-
tifying sources of error, Moreover, the development of a measurement process model maybe done
at any point. In all cases, however, the approach chosen should be rigorously followed. If not,
glaring mistakes can result,

| System Model msp System Equations "= System Error Model = System Uncertainty Model j

Later, the methodologies for developing system error models and uncertainty models will be de-
scribed. These methodologies provide a framework by which measurement system errors and un-
certainties can be identified, estimated and analyzed.

G.2 ldentifying the Measurement System Errors

The figure below shows a temperature measurement system. Following the prescription described
earlier, the analysis of the measurement uncertainty of this system involves the development of a
system error model. The development of this model will trace the measured value through the
system stages and interfaces of the system, from the measurand input to the data processor out-
put.

Identifying sources of measurement system error involves identifying and describing the physical
processes that affect a measured value along the measurement path, First, one should draw a
simple schematic of the system and then, examine each of the system components in detail to
identify error sources,
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FIGURE G.1 — TEMPERATURE MEASUREMENT SYSTEM. Differences in the thermoelectric prop-

erties of dissimilar conductors produces a voltage difference. This voltage difference is mea-
sured and expressed in terms of a temperature.

G.2.1. Sensing (Thermocouple)

‘Temperature differences between the ends of conductors give rise to voltage gradients. Because of

differences in thermoelectric properties, different conductors exhibit different voltage gradients for
the same temperature difference, This is the case for chromel and alumel. A given temperature
difference across a chromel lead gives rise to a different voltage gradient than the same tempera-
ture difference produces across an alumel lead,

Sensitivity — A difference in potential across chromel and alumel leads connected from a mea-
surand to a reference junction produces a potential difference between the leads at the reference
junction. To convert from this potential difference to a temperature difference requires knowing
the sensitivity of the response of the thermocouple to temperature differences. An error in the as-

sumed value for this sensitivity, expressed in terms of uv/°C, produces an error in the sensed
value of the temperature of the measurand,

Errors are possible from other sources as well. These include the following:

Hysteresis — Hysteresis is the resistance of a response to a change in stimulus, If the measurand

temperature is time-varying, then any lack of response of the thermocouple to rapid temperature
changes is a sourceé of error,

Measurand Fluctuations — If the measured value is a quantity that will be communicated for use
in some practical application, then random fluctuations that cause deviations from this reported
value are a source of error. Randomly occurring differences in measurand value should not be
confused with any time-varying aspect of a measurand, such as its signal frequency, that is a de-
sirable characteristic. Measurand fluctuations are unknown and undesirable phenomena that
randomly alter measurement results and may introduce errors in reported measurement values,

Non-1 inearity — The potential developed across the thermocouple leads follows a defined func-
tional relationship to the measurand temperature. This relationship is embodied in a mathemati-
cal model of temperature vs. potential difference. Given the use of the model, any departure be-
tween the assumed relationship and the actual temperature constitutes an error,

For example, let

AT =T, - T,
Voa=Vo=V,
Voc= Vo~V .




The voltage differences are given in terms of AT by
Vou = & + QAT + @ (AT) + a(AT)* + .*”
Voc = by + DAT + by(AT)’ + by(AT)® + -

from which the voltage difference AV = V, - VA is expressed as
AV =(a, - bo)+(a, —b,)AT +(a, -b,)(AT) +(as -b,)(AT)’+--- .

Differences between actual values of the coeflicients in this expression and their assumed values
give rise to non-linearity error.

Noise - Since the thermocouple leads are conductors, externally applied electromagnetic fields
may introduce stray emfs that contaminate the potential differences due to the temperature be-
tween the measurand and the reference junction, Such “noise” comprises an error, Noise is usu-
ally random in character.

Thermally generated noise is also possible, If the bandwidth of the signal being measured is B Hz,
the ambient temperature is 7’, and the resistance of a given lead is R, then the thermal noise level
in the lead Is equal to kzBRT, where kg is Boltizmann's constant. For the present example, thermal
noise can be considered negligible.

Junction Temperature — Although the reference junction is an ice bath, impurities in the bath
may cause the temperature to differ slightly from O ‘C. In addition, the temperature may not be

precisely uniform over the physical extent of the bath, differing from location to location by small
amounts,

G.2.2. Interfacing (Reference Junction—Low Pass Filter)

The potential difference at the reference junction output terminals is transmitted through copper
wires and applied across the input terminals of a low pass filter, The copper wires and the filter
terminals comprise an interface between the reference junction and the data acquisition system,
The sources of error are:

Interface Loss — The voltage applied across the terminals of the low pass filter suffers a drop due

to the resistance of the connecting leads from the reference junction and of the low pass filter
contacts,

Noise — Electromagnetic noise is a factor for the connecting leads, while both the connecting
leads and the low pass filter terminals are subject to thermal noise,

Crosstalk — Leakage currents between input filter terminals may alter the potential difference
across the terminals,

G.2.3. Filtering (Low Pass Filter)

The potential difference that survives the reference junction - low pass filter interface is altered by
the low pass filter. The filter attenuates noise that may be present and provides a “cleaned up”
potential difference to an amplifier. However, some noise gets through. Also, the filter attenuates
the signal somewhat and itself generates a small noise component, The sources of error in the low
pass filter interface are the following:




i

Interface Loss — Although the filter is intended to attenuate unwanted noise, some signal atten-
uation also occurs,

Non-linearity — The response of a filter over the range from its cutoff frequency (f) to its terminat-
ing frequency (f;) is usually considered to be linear. Departures from this assumed linearity con-
stitute errors.

Noise — Not all the input noise will be filtered out, The noise that remains will be attenuated by
an amount that depends on the roll-off characteristics of the filter. These characteristics are
usually assumed to be linear and are expressed in terms of dB per octave, Thermal noise is also
generated within the filter itself,

G.2.4. Interfacing (Low Pass Filter—Amplifier)

The potential difference output by the low pass filter is fed to the amplifier across an interface
comprised of the leads from the low pass filter and the input terminals of the amplifier. The
sources of error are:

interface Loss — The voltage at the amplifier terminals suffers a drop due to the resistance of the
connecting leads from the low pass filter and of the input terminal contacts.

Noise — Electromagnetic noise is a factor for the connecting leads, while both the connecting
leads and the amplifier terminals are subject to thermal noise,

Crosstalk — Leakage currents between input amplifier terminals may cause a decrease in the
potential difference across the terminals.

G.2.5. Amplification (Amplifier)

The amplifier amplifies the potential difference (and any noise received from the low pass filter)
and outputs the result to an A/D converter. Several sources of error are present:

Gain - Gain is the ratio of the amplifier output signal voltage to the input signal voltage, Gain
errors are those that lead to a uniform shift in expected amplifier output vs. actual output, Gain
errors are composed of inherent (bias) errors and temperature induced (precision and bias) errors,

Gain Stability — If the amplifier voltage gain is represented by G, its input resistance by Rand its
feedback resistance by R, then oscillations are possible when

RGy _,
R+R’
These oscillations appear as an instability in the amplifier gain,

Normal Mode — Normal mode voltages are differences in zero potential that occur when amplifier
input (signal) lines are not balanced, Normal mode voltages are essentially random in character.

Common Mode — Common mode voltage consists of unwanted voltages in the measurement sys-
tem that are common to both amplifier input terminals. They produce a shift in the zero baseline
of the signal to be amplified.

Common Mode Rejection Ratio (CMRR) — The CMRR s the ratio of the amplifier signal voltage
gain to the common mode voltage gain. CMRR is often useful in estimating errors In amplifier
output.




Offset — Offset voltages and currents are applied to the amplifier input terminals to compensate
for systematically unbalanced input stages,

The various parameters involved in offset compensation are the following

Input Bias Current — A current supplied to compensate for unequal bias currents in input
stages. It is equal to one-half the sum of the currents entering the separate input termi-

nals.

Input Offset Current — The difference between the separate currents entering the input
terminals.

Input Offset Current Drift — T'he ratio of the change of input offset current to a change in
temperature.

input Offset Voltage — The voltage applied to achieve a zero amplifier output when the in-
put signal is zero.

Input Offset Voltage Drift — The rat-to of the change of input offset voltage to a change in
temperature.

Output Offset Voltage — The voltage across the amplifier output terminals when the input
terminals are grounded.

Power Supply Rejection Ratio (PSSR) — The ratio of the change in input offset voltage to
the corresponding change in a given power supply voltage, with all other power supply
voltages held fixed,

Slew Rate — The maximum time rate of change of the amplifier output voltage under
large-signal (usually square wave) conditions, Slew rate usually applies to the slower of
the leading edge and trailing edge responses,

Non-Linearity - As with other components, actual amplifier response may depart from the as-
sumed output vs. input curve, Unlike gain errors, which are uniform differences between ex-
pected output vs. input, non-linearity errors are point-by-point differences in actual vs. expected
response over the range of input signal levels and frequencies. Non-linearity error consists of the
disagreement between the characteristic signature of an amplifier's response and its expected
characteristic,

Noise — Noise generated within the amplifier that enters the signal path causes errors in ampli-
fier output.
G.2.6. Interfacing (Amplifier—A/D Converter)

The amplified potential difference is applied across the A/D converter input terminals, The inter-
face between the amplifier and the A/D converter is prone to the following error sources:

Interface Loss - The voltage at the A/D converter terminals suffers a drop due to the resistance
of the connecting leads from the amplifier.

Noise — Electromagnetic noise is a factor for the connecting leads, while both the connecting
leads and the A/D converter terminals are subject to thermal noise,

Crosstalk — Leakage between input A/D converter may cause a decrease in the potential differ-
ence across the terminals.

O D —



G.2.7. Sampling (A/D Converter)

The potential difference applied to the A/D converter terminals is sampled. Samples are taken in
windows (apertures) of time of finite duration. Several sources of error accompany the sampling
process. (Refer to Section 4 for a detailed treatment of this subject.)

Sampling Rate — The input signal is sampled at a finite rate. Because of this, an ‘incomplete rep-
resentation of the waveform is available for analog to digital conversion. The sampled points that
are converted to binary code for processing purposes need to be eventually reconverted back to
some form of analog or quasi-analog representation for information,

Aperture Time — A finite amount of time &is required to sample the signal voltage V, During this
time, the signal value changes by an amount éV.

Hysteresis — In sampling the signal, the sampling circuit must be able to respond to and recover
from signal changes, If the rise times and recovery times of the sampling circuit are not negligible
in comparison with the sampling aperture time, then hysteresis errors occur.

Aliasing — An alias is an artifact of the sampling process masquerading as a signal component,
As stated in Section 4, it s important to remember that once A/D conversion is completed, there
is no way to know from the sampled data whether allasing has occurred. Once sampled, there is
no way to correct the data for alias-induced errors,

Digital Flltering — The output from the A/D converter contains coded amplitude variations that
may represent alias frequencies. At this point, the signal has been digitized and the filtering pro-
cess must take place in the digital domain.

The elimination of alias frequencies by digital filtering is not a free ride, however. The process in-
troduces some error. Fortunately, for the frequencies involved in the present example, these er-
rors are negligible and will not be covered here. For cases where these errors are significant, the
reader is encouraged to survey the literature on anti-allasing filters, '€

G.2.8. Sensing (A/D Converter)

In digitizing the analog potential difference, the sampled potential difference is applied across a
network of analog components. These components are a set of analog sensing elements, The net-
work outputs a coded pulse consisting of ones and zeros. The location of these ones and zeros is a
function of the input signal level and the response of the network to this signal level,

Errors that may be present In sensing (responding to) the input signal level and converting this
level into digital code are the following

Gain — One type of A/D converter employs a ladder network of resistors, The configuration of the
network is such that different signal levels cause different discrete responses, A major factor af-
fecting the accuracy of these responses is the error in the’ value of the resistors in the network,
This is because the voltage drop (negative gain) across each component resistor is a function of
the signal level and the component’s DC resistance,
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Noise — As expected, stray voltages are sensed along with the signal voltage and contribute to the
voltage level applied to the network. In addition, thermal fluctuations in components cause fluc-
tuations in voltage drops.

G.2.9. Quantizing (A/D Converter)

The potential drop (or lack of a potential drop) sensed across each element of the A/D converter
sensing network produces either a” 1“ or ‘O” to the converter. This response constitutes a “bit” in
the binary code that represents the sampled value, The position of the bit in the code is deter-
mined by which network element originated it.

Evenif no errors were present in sampling and sensing the tnput signal, errors would still be in-
troduced by the discrete nature of the encoding process. Suppose, for example, that the full scale
signal level (dynamic range) of the A/D converter is A volts. If n bits are used in the encoding pro-
cess, then a voltage V can be resolved into 2" discrete steps, each of size A/2'. The error in the
voltage V is thus

&gV)= V—mf‘ ,

where m is some integer determined by the sensing function of the D/A converter. As will be dis-
cussed later, the uncertainty associated with each step is one-half the value of the magnitude of
the stc\eqp. Consequently, the uncertainty inherent in quantizing a voltage Vis (1 /7 2)(A/ 2), or
A /2™ !This is embodied in the expression
A
unantaed =V gensed iaﬁ .

G.2.1 O. Data Reduction and Analysis (Data Processor)

The quantized output from the A/D converter is input to a data processor. Since the output is
digital, the interface between the A/D converter and the data processor will be assumed to not
constitute an error source. The data processor converts the binary coded number to a value and
applies any correction factors that may be appropriate,

Two of the principal sources of error in this process are correction factor error and data reduction
error.

Correctlon Factor Error — The correction factor applied to the digitally encoded voltage difference
attempts to correct for losses that occur between the reference junction and the data processor.
Uncertainties in estimating these losses may lead to errors in the correction factors,

Data Reduction Error — In converting the corrected value for the voltage difference into a tem-
perature difference, the data processor attempts to solve the equation

AV = (a,- b)AT + (a, - b,)AT) + (as - b AT + . . ..

In arriving at the solution, the series is truncated at some polynomial order, This truncation leads

to a discrepancy between the solved-for temperature difference and the actual temperature differ-
ence.




For example, suppose that the series is truncated to second order, Then the data processor solu-
tion for the temperature difference becomes

— :
1{a,-b 1{a,-b V.-V,
AT =1L+ -—( . ‘)+ £—4-4+0(3) .
2(“2"172) \[4 a,-b, a,-b,
where the quantities V, and V, are corrected values for V, and V, and 0(3) represents the error
due to neglecting third order and higher terms.

G.2.1 1. Decoding (Data Processor)

The output of the data processor is a corrected result that is displayed as a decimal number, The
following error source is relevant in developing and displaying this number.

Binary to Decimal Conversion — Suppose that the digital “resolution” of the binary encoded signal
is A / 2". Suppose further that the full-scale value data processor readout is S and that m digits
are displayed. Then the resolution of the decimal display of the data processor is S / 10™. Another
way of saying this is that the input to the data processor is a multiple of steps of size

A

hb=‘2—.. ,

while the decimal encoded display is presented in steps of size

=S

1"
This means that a binary encoding of a voltage V into a representation V'= 2*h, will be translated
into @ decimal representation V* = 10¥h,, where x and y are integers, The quantization error that

results from expressing an analog value first as a binary coded value and second as a decimal
coded value is the sum of these two errors:

hy

Quantization error= *(h, + hy)/ 2 = 1-2—11—,,- i?—o/% ,

G.3 Identifying the Measurement Process Errors

Measurement process errors are those that arise from the measurement procedure, measuring
environment, measurement system operation and from the perception and interpretation of mea-
surement results. These errors can be broadly grouped in the following categories:

Measuring Parameter Precision Error - This error is due to random changes tn the measurement
system output with the input held fixed. It is observed during random sampling in which succes-
sive sampled measurements differ randomly with respect to sign and magnitude,

Measurand Precision Error — This error is due to short-term random variations in the measurand
that occur during the taking of a measurement sample, Note that it is necessary to have a basic
understanding of the measurand so that random variations are not mistakenly interpreted as er-
rors — Le., the variations maybe a dynamic characteristic of the phenomenon being measured or
measurand anomalies,




Precision Error - This is the combtned precision error due to measuring parameter and measur-
and fluctuations. This error has -a category in its own right in that random measuring parameter
and measurand errors are often not distinguishable as separate entities. In many cases, what is
observed or estimated is instead their combined effect,

Ancillary Error — Ancillary error is due to errors or instabilities in ancillary equipment such as
power supplies, secondary monitoring devices, etc. For example, if temperature corrections are
applied to measured values, then the error in a given temperature measurement constitutes an
ancillary error.

Operator Error — Operator error occurs as a result of a discrepancy between the measured value
provided by a measuring system and the perception of this value,

G.3.1.  Precision Error

Precision error cannot be estimated directly. Instead, what is usually done is to acknowledge that
the error exists and to compute the resultant of uncertainty based on a sample of measurements,
There is an example of this later In the discussion on process uncertainty,

In cases where samples of data are not available, yet an estimate of precision uncertainty is
needed, it may suflice to infer the uncertainty from estimated limits that are assumed to bound
the error with some degree of confidence, This procedure will be demonstrated for bias uncer-
tainty later on.

G.3.2. Ancillary Error
Amplifier — Suppose that amplifier gain is dependent on temperature according to the equation
pGI:P:’+@_ 0)1

where « is a coefficient whose units are volts/deg C, T is the ambient temperature, and TO is the
nominal or calibration temperature for the amplifier. Then the error in amplifier gain, &ps))
should be written

8(1’51) = e(pgl )+ ke(T) + (T - To)e(x) .

The terms xe(T) + (T - T, )e(x) are process error terms. The term &7) arises from errors in measur-
ing or estimating the value of the ambient temperature used in the equation to compute amplifier
gain. The term &x) arises from errors in estimating the temperature coeflicient K, This last term
can often be ignored,

Noise - The error in the outputs of several of the system stages includes a component due to
noise. Since noise is dependent on temperature, estimating its value involves knowing ambient
and operating temperatures, Errors in these ancillary measurements of temperature appear as
process errors,

G.3.3. Operator Error

In a system employing an analog display, operator error may arise from parallax in lining up a
meter needle relative to marked values or in interpolating “between the lines” in non linearly
scaled displays, Since the system in this example provides a digital readout, operator error will be
taken to be zero.




G.4 Methodology for Developing a Measurement
System Error Model

In this treatment, systems are considered as collections of stages whose responses are functions
of inputs from other stages and of parameters that characterize the stage and the measuring en-
vironment,

Representing the output of the #th stage of a system by Y, and the input by X, the equation for
each stage is

Y = Y((xupt)

where the vector p is the th stage’s parameter vector, (Note that, for a series system, X, =Y,,.)

MEASURAND
VALUE X

Ficure G.2 — THe MEASUREMENT MODEL, The output of the 8th stage 1s a function of the pa-
rameters of the stage and of the input vector X= (x. YS.Y )

The output of the measurement system, denoted y(¥x), differs from the measurand by an error
&(¥lx) = y(¥lx) -

This error is a function of the individual responses of the measurement system and of the errors
in these responses. This functional relationship is developed using a Taylor series expansion
systems whose component errors are small relative to the outputs of the stages, the expansion
can be terminated at first order in the error components.

In most cases, the output of the system will be the output of the nth stage, For these systems, the
measurement error is given by (the variable Y, is the measurand value x

- (5 Bl e B3 E{ac o

where g, is the number of inputs to the nth stage, and where each error component g, is ex-

pressed in terms of the errors of other system responses and of the errors of its characterizing pa-
rameters:

“s m(‘”’&) H};(ay)

. For



The quantity m, is the number of components of the parameter vector for the #h stage, and p, is
the sth component,

This method of establishing system errors will be illustrated in an example, In the example, an er-
ror model will be developed from which the computation of measurement uncertainty can be

made. The overall system uncertainty will be expressed in terms of the uncertainties of compo-
nent uncertainties derived from component errors.

G.5 Developing the System Error Model

Referring to the previously discussed hypothetical temperature measurement system, we can
construct the following system block diagram,

MEASURAND
VALUE
X .Y, ' s Y,
[ ' MEASURED
) A ) » , Y, VALUE

Ficure G.3 — THE TEMPERATURE MEASUREMENT SYSTEM MODEL.

Thermocouple Output (~) — The relevant parameters are

P Sensitivity (temperature to voltage)

P12 Thermocouple/reference junction hysteresis
Pis Thermocouple non-linearity

Pis Noise

p,;Junction temperature deviation

Assuming that hysteresis and non-linearity can be expressed in terms of percentage of measur-
and value, the output is given by

Y, (P + Pns)(1+P|z)(x + Pis) +- P
=Y +¢, .

Using the general error equations, the error in Y, is given by




& = 8(1’1"_‘)
= ;l-g-;:—:s(pu) +%l-;l£(x)

=(x+ pns){(l + pm)[e(pn )+ 8(pls)] +(py+ pxs)e(pnz)}
+ (Pt P+ pn)[e(pus) + 6‘(x)] + &(py)

If measurand fluctuations are not a factor, then &x) can be set to zero and

&= (x+ Px\sf (1+ pl2)[€(pll) + e(pls)]
+(P]]+ pls)s(pm)} + (Pu+ Pis)1 + Pua)e(pis) + €(pis) *
It maybe that some simplification can be made at this point. For example, suppose that

Pis << Pn» P2 <<1 and p;g <<x .
Then

&= X[S(Pu) + Pug(Pie) + e(pxs)] +&(P1y) + Pre(Pis) -

Interface 1 — Thermocouple to Filter (¥,) — The relevant parameters are

P21 Interface loss factor
Py Crosstalk
Pos Noise

The input to the low pass filter from interface 1 is
Yo= (14 P 1+ Py )Yy + Pas
Using the general model described earlier, the error in Y,is found to be
& = &(p; .Yyx)

_9Y, Yy
oY, a1 éapﬁj £(p2J)

w* Pl +Pi)E + Ynol(l + py)e(pa )+ (1t pal)s(paz)] +&(Pys) |

At this point, we seek to simplify the analysis, as we did in the previous step, retaining only terms
considered to be significant. For instance, suppose that the interface loss and the crosstalk pa-
rameters are small relative to unity. If so, the above expression becomes, to first order in error
terms.

&€+ Y,°[£(p,,) + e(p,,)] + &(Pas)
Substituting for ¢, obtatned in the previous step yields

&= x[e(p,,)+ P€(Pi2)+ e(pna)]+ s(p“)+Y,°[e(p2,) + £(p22)] + &(pas) .

At this point, we observe that substituting error terms from previous steps can lead to equations
at subsequent stages that become extremely complicated, TMs argues that the general expres-




Psy Filter signal attenuation

P32 Filter noise

P33 Cut-off frequency, J,

ps; Maximum frequency output, f,

The output of the filter is given by

1+ py,)Y, J<J.
Yy = |(1 +py)Y, + P2t Pa )Y, 2(S - Pss) B ES A
Pss P m
Lpaz fzfn
Where the variable f is the input frequency. Applying the usual expressions gives
aY oY,
(aY +apa ( 31) fs-fc
— aYs
ea_* £2+2¢9 &(ps,) JesSs
'Psq
£(p32) f 2 fn

which becomes, to first order,

(l + Pal)ez + Y;c(p,l) J<f,
s (TR Selpu)]+ L5 i) &2—(‘—(‘—*&;7)‘1[(1, DAL= L) fsssd
(py,) Sz,

where the parameters p;3 and p;, have been replaced by f, and f, respectively. If errors in these
frequencies can be ignored, which is usually the case, then the above result can be greatly sim-
plified. In addition, if the filter attenuation p;, << 1, further simplification is possible. The final
expression, accurate to first order is given by




£+ Y,°£(_psln) r<f.
&y = fj'": ::;; [6, *;Y2°8(psl)]+ ;‘:“,}c‘c S(paz) f.<f<]..
&(Pss) rof

Note that the parameter p,, is important in describing the roll-off of the filter. It constitutes an er-
ror source in that errors inits value introduce a departure of the roll-off from the assumed or
nominal value. In the present discussion, this departure can be thought of as a non-linearity er-
ror in that it represents a discrepancy between assumed Inter performance and actual filter per-
formance, Strictly speaking, non-linearity error would also include error due to a departure of the
filter roll-off curve from the assumed straight line, Ordinarily, such errors are thought to be small
enough to ignore.

Interface 2 — Filter to Amplifier ( ¥,)— The parameters are

Pa1 Interface loss factor
Ps2 Crosstalk
Pas Noise

The input to the amplifier from interface 2 is

o =(1+ P )1+ Pgg)Ys + Pys -
The €FTOr N this input is

3
3Y4 83"’2 X 8 (Pai)

l-l

(at pu)(l + p‘z 83 + YSO[ 1 +p42)8(p“) +(1 + p41)£(p42)]+ e(pcs) .

Assuming that p,,<<1, and p,,<< 1, permits us to write

E =8y . Y:[G(pu)'s(p“)]'e(p”) :

Amplifier (Y9 — The parameters are
Psi  Amplifier gain
Ps2  Gain Instability
Pss  Normal mode voltage
Dy Offset
Pss Non-linearity
Pss Common mode voltage
DPs;  Noise

The output is given by




Ys =(Ps1 + Pso + Pss (Y4 + Pss + Psa + Psa) + Psz -
The error in the amplifier output is

3Y aY
& = oY, -2, +z OPs, s(pﬁl)

=(Ps) + Pez + pss)[£4 +&(Pss) + €(Paa) (pw)]
(Y4° t Psst Pp T pw){s (Pst) + &(Pea) + (pss)] + &(Pgr) -

Assuming that pg, << Ps;s Pes << Ps;» Pss << Y. Pss <<Y}, and pg <<v:, the error in the
amplifier output can be approximated by

& = psx[£4 + €(Pss) + €(Pea) + s(pw)] + Yf[e(psl) + &(Psz) + & p55)] + &(Pgr) -

Interface 3 — Amplifier to A/D Converter ( Y;) — The parameters for Interface 3 are

Pei Interface loss factor
Pe2 Crosstalk
Pes Noise

The input to the A/D converter from interface 3 is

Yo =(1+ Pe )1 + Pea)Ys + Pes -
The expression for the error in this input is

oY,
& ——6’35 +Za &(Pe1)
6(

=1

(1 +P61)(l + P ) €5 + Y:[(l + pm)e(p61)+ (l + Pex)e(pe:z)] + e(psa) ,

Making the usual assumptions p,, << 1, and pg, << 1, yields

& = &+ Y:[e(psx) + e(pez)]“’ e(psa) .

A/D Converter (Y,) — The parameters are
pn Analog loss
P Aperture time error (§V/V)
p73  Sampling rate error (6V/V)
P74 Quantization error (6V/V)
Pz Linearity error (AV/V)
P Noise level .

The output is given by

71+ Prs)1+Prs)1 + PR )l + P1)Ye+ Dot Pre.

for which

Ay  pe— ——



'

oY.
86 +23 ; e(pn)

= (l + pn)(l + Pas 1+ Pro )1+ Py )es + Yo [(1+ Pas X1 + Pas )(1 + Pra)e(Pr1)
+(1+ p)1 + Pas)1 + Pn)e(Pr) + (1 + Prs)1+ P )1+ Pr.)e(Pss)
+H1+ p7s)(l + pp)1+ Pn)e p75)] + &(Pgy) + 8(})76) .

With the usual assumptions regarding relative magnitudes of parameters (except for p;), the A/D
converter error can be written

& =(1+ py,)es - Yo{s(p.“) (Q+p, [G(pn - &(Pys) - P75)]} &(Pra) €(Pr)

Data Processor (¥) — The parameters are

Ds; Voltage to temperature conversion factor
Ps2 Resolution

Pss  Correction factor (applied as a compensation for losses and gains in the signal
path)

The output of the measurement system is given by

s - PssPa1Y7 + Psz »
with €rror

dY, W' Yl
=Zl8e + &P
€ oY, gaps( ( aa)
“PasPaifr + Y7 [Pust(Par) + Por€(Pes)] + €(Peo)
The correction factor error is composed of two parts, First is the error due to any discrepancy be-

tween the computed and actual signal path gains and losses. Second is the error due to the fact
that the correction is applied digitally and is subject to quantization error. Thus

8( p ) analytlcul 8::numtkm ]

One step remains to complete the development of the system error equation, By re-arranging
terms in the expression for g, we can write

. f £
€ = PoiPastr +[-@—‘ﬂl —Lpﬁ)]pmpes&' +€(Pe;) -

Ds; Das

The term pg,pesY; IS the signal processor’s estimate of the measurand value x, If the measuring
system is accurate to first order in errors, and the signal frequency is less than f, then we can
write

Es = PorPests + X[ s(:‘“) elp “)] +&(Pez) -
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(G.6 Methodology for Developing a Measurement
System Uncertainty Model

The system error model forms the backbone of the system uncertainty model, Estimating the
measurement uncertainty of a system involves building the uncertainty on the system error
model framework, term by term, The sources of error become sources of uncertainty. The contri-
bution of each source to the total uncertainty is governed by the coeflicient of the source in the
model, These coeflicients are obtained directly from the system equations,

For example, consider the measurement of the velocity u of a body, The measurement is decom-
posed into measurements of distance d and time . The system equation is

d
=

Using the methodology described above for constructing the error model yields

LU=

ofv)= 22e(d) + Le(t)
- [8_(09_8_@]0 ,
d t

Developing the uncertainty model from the error model involves first writing an expression for the
stattstical variance of the error in v. It will be worthwhile to pause here and discuss some of the
properties of variances.

G.6.1 Statistical Variance

In general, the variance in the sum of two quantities x and Y is given by

var(x +y) = var(x) + var(y) + 2cov(x.y),

where the term cov(x,y) is the “covariance™ of x and y. The nature and computation of the covari-
ance is discussed in detail in the 1SO and NIST guidelines and will not be covered here, This is for
two reasons, First, developing an understanding of the basic approach to uncertainty analysis,
which is the intent of this discussion, will not be overly enhanced by deMng into what can turn
into an involved and difficult subject,!” Second, many, if not most, error sources exhibit a prop-
erty called “statistical independence,” Uncertainties in statistically independent sources do not
influence one another with the result that their covariance vanishes, So, in most cases, the co-
variance is zero anyway. This allows us to concentrate almost exclusively on the variance, ¢

There is a simple rule that governs variances that is extremely useful in developing uncertainty
estimates. This rule states that, if aand b are constants (or, if you will, “coefficients”), and if x
and y are statistically independent variables, then

1 The subject involves the concept of expectation value. The expectation value of a variable is obtained by

integrating or summing the product of the variable and its probability density function over all values
accessible to the variable. The expectation value for a variable x is written E(x). The covariance of two
variables x and y is written E{[x - EXlly - E{y)]}.
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The variance of a variable x is the expectation value Ef[x - o058




var(ax + by) = a’ var(x) + b’ var(y) ,

Applying this rule to the error model of the velocity measurement example above gives

Jv

FIAY :
var(g(v)) = (:9-5) var(e(d)) + (:97) var(g(t))
= (u/ @)* var(e(d))+ (v/ t)* var(e(t)) .
The variance in the error of a quantity is just the variance in the quantity itself. Thus, for a com-
ponent of error X,
var(e(x)) = var(x)
=02,

With this in mind, the variance of the velocity measurement is written

2_ ig)’ 2 (@)’
% “(aa %a*(5) o
=(v/d)’ci+(v/t)’e? .or
o?=(1/1) 2 +(d/t?) a? .
This simple example contains the seeds of uncertainty analysis in general, Using the expression
for the output of the tth system stage given earlier a general expression for the variance in this

output can be constructed, If the errors of input stages are statistically Independent of one an-
other, then this expression can be written

2 2
oY, <[ Y,
ol=Y|=——t|o?+)Y|=—| 0% .
‘ g{(a)’,‘) ' Jz-}(apv] "
This variance provides the form of the general uncertainty model for a system with statistically
independent error sources,

G.6.2 Relationship of Standard Deviation to System Uncertainty

The square root of the variance of a quantity is called the standard deviation. The standard devia-
tion is an important parameter in defining the way that a quantity is statistically distributed, i.e.,
the way in which the values of the quantity are related to their probabilities of occurrence, In
particular, the standard deviation is a measure of the spread of the values of the quantity around
some reference point, such as a mean value, mode value or median value,
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FIGURE G.4 - THE MEASUREMENT DISTRIBUTION. The quantity b s the average bias of the
measurement system.

In general, the larger the standard deviation, the greater the spread. This means that, with large
standard deviations, values of a quantity tend not to be “localized,” i.e., the confidence with which
they are known tends to be low. Equating the word “confidence” with the less precise but more
comfortable word “certainty,” we see that the standard deviation for a quantity is related to its un-
certainty. In fact, in the 1S0 and NIST references, the standard deviation of a quantity is equated
to its uncertainty. This means that we can write

2 2
oY, <[ Y,
2 = —1 2 —t 0’2 .
K g:[ayk) % +12-:n[apy) "

G.7 Evaluating the Measurement Uncertainty
G.7.1  Thermocouple

From the expression for thermocouple error, the uncertainty in the thermocouple output is given
by

0, ='Jx2(ol2’l| +p|210i“ +O':“)+O':“ +p1210:’u ’

where
o, = T-)V translation uncertainty
o,, = Junction hysteresis uncertainty
o,, = Thermocouple nonlinearity uncertainty
o,, - Noise uncertainty
o,, = Junction temperature uncertainty.

G.7.2 Interface 1 (Reference Junction—Low Pass Filter)

The uncertainty in the signal passed input to the low pass filter is given by




.02 'Jolz + (Y’o-)a(o:u + o?’u)+ 0’:” *

where
o,, -Interface loss uncertainty
o,, =Crosstalk uncertainty
o,, =Interface noise uncertainty
Y = pux.

G.7.3 Low Pass Filter

The uncertainty in the output of the low pass filter is given by

Voi+(¥2)f o2,

’ 2
our (=l stsren o (=5 o

O
where
o,, = Filter attenuation uncertainty
o,, = Filter noise uncertainty.
Y, =Y = bux .

G.7.4 Interface 2 (Low Pass Filter—Amplifier)

The uncertainty in the signal input to the amplifier is given by

. _
0v=\0} +(¥3)'(6}, + 03, )+ 0%, -
where
o,, -Interface loss uncertainty
0,. -Crosstalk uncertainty

o,, -Interface noise uncertainty.

The variable Yy is given by

PnX foc
Y°= PuX - < f<
s mx_A—‘-_‘-I:(f J) J.£S<,

0 J2J,




G.7.5 Amplifier

The uncertainty in the amplifier output is

Op = \/ng(f’f +0p + 05, + 05, )+ (Yf)a(o,’," +05, +d,)+ 00,

where
o,, = Amplifier gain uncertainty (includes process uncertainty
o,, = Gain instability uncertainty
o,, = Normal mode voltage uncertainty
o,. = Offset uncertainty
o,. = Amplifier non-linearity uncertainty
0,. = Common mode voltage uncertainty
o,, = Amplifier noise uncertainty
Y) = paYs .

Recalling the process error discussion, the uncertainty in the amplifier gain is given by

Oy, = \/(o° )2 + K202 +(T-T,)’ 02

Py

G.7.6 Interface 3 (Amplifier—A/D Converter)

The uncertainty of the input to the A/D converter is

0=} + (1) (03, + 0% )+ *

Par ]

where
o,. = Interface loss uncertainty
o,, = A/D input crosstalk uncertainty
0,., = Interface noise uncertainty
Yo = Y0 = p,Ys

G.7.7 Sampling (A/D Converter)

Several sources of uncertainty are inherent in converting the analog voltage input to a digital rep-
resentation, These include analog loss uncertainty, sampling rate uncertainty, aperture time un-
certainty, quantization uncertainty and noise uncertainty. Uncertainties for analog loss and noise
can be obtained in a straightforward way from specifications for the A/D converter stage.
Uncertainties due to sampling rate, aperture time and quantization are more elusive and may re-
quire some extra computation,

The expression for sampling uncertainty is

o, s\/[l'*(Pn)z]og ‘*(Yé’)2 {0,’," +[l +(p“)2](03p" +02 +02 +0% )}*"3». _

where

0,, = D/A converter loss uncertainty




Q
|

Aperature ttme uncertainty

Prs

0,, = Sampling rate uncertainty
O,, - Quantization uncertainty
0,, = Linearity uncertainty

0,, - Noise uncertainty

Yo = Y = paYs .

G.7.8 System Uncertainty

The uncertainty of the output of the data processor is the uncertainty in the measurement sys-
tem. If we can make the accuracy claims that were made in the discussion on data reduction er-
ror, then this uncertainty can be written

~ 20-7- 2] ofm o?’n
o-yslem‘: (pﬂlp”) 7+X ;'2—+_2 G:u *
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where
o, = Data processor voltage to temperature conversion uncertainty
o,, = Resolution uncertainty
o,, = Error correction factor uncertainty

Measurand value = pgpe.Ys; -

G.8 Establishing the Standard Deviations for
Uncertainty Components

Standard deviations will now be sought for the outputs of the various stages of the system,

G.8.1  Thermocouple

Suppose that the temperature to be measured varies sinusoidally in time over 20 ‘C to 100 °C
with a frequency of from zero to 10 Hz. Under these conditions, the normal Type K thermocouple
sensitivity is 22.8 0.2 uv/°C, Because of the low frequency, we can ignore hysteresis, This leaves
non-linearity, noise and junction temperature uncertainty.

In the temperature range of interest, for the differences in temperature under consideration, non-
linearity is negligible. In addition, since the resistance of the chromel and alumel leads is less
than one ohm, and since the temperature is near room temperature, the noise signal for a band-
width of 10 Hz is on the order of 107 volts, clearly negligible, As for noise induced by stray elec-
tromagnetic signals, at an upper frequency of 10 Hz, the noise generated by these is also negligi-
ble.

Using a typical specification of +0.25 °C for junction temperature and +0. 1 ‘C for bath uniformity,
the reference junction error limits are approximately@0,25)*+(0.10)2 ‘C, or about 10.27 ‘C.

In summary, the thermocouple parameters are

Thermocouple




Sensitivity (p, ,): = 22.8 0.2 uv/°C

Junction hysteresis (p,,): =0
Non-linearity (p;s): =0
Noise (p,9: =0
Junction temperature {(p,3: = O'C10.27 ‘C.

Assume that the + error imits in these specifications are stated without an accompanying statis-
tical confidence limit, as is often the case with specifications from equipment manufacturers.
Without such a confidence limit or other supporting statistics, estimates of uncertainty obtained
from these limits are heuristic in nature. Such estimates are referred to in the 1SO and NIST
guidelines as Type B estimates®.

It should not be assumed that evaluations or repeated observations are necessar-
ily superior to evaluations obtained by other means, Type A evaluations of stan-
dard uncertainty are not necessarily more reliable that Type B and that in many
practical measurement situations the components obtained from Type B evalua-
tions may be better known that the components obtained from Type A evaluations,

Obtaining Type B uncertainty estimates from the above data involves estimating what the prob-
abilities of error containment are for the t limits and making some assumptions as to how errors
are distributed within these limits. For this example, we will assume that the 0.2 yv/°C sensitiv-
ity imits bound sensitivity errors with approximately 99% probability and that the junction tem-
perature limits of £0.27 “C bound errors from thts source with 99.73% probability.

We will also assume that sensitivity and junction temperature errors are normally distributed
with zero mean within their respective limits, From statistical tables, the normal deviates of 2.576
and 3.000 are found for 99% and 99. 73% significance levels. This means that +0.2 yv/ “ C corre-
sponds to 2,576 standard deviations from the mean for sensitivity errors, and that +0.27 °C cor-
responds to 3,000 standard deviations from the mean for junction temperature errors. The re-
spective standard deviations are thus

2 uv/e
Op = Onenstony = %s 0,078 uV/°C. and
_0.27°C

O, " Ohnun & 3000 =0.09°C.
From the expression for o,:

0, = \/x"(of,” + p?,0°

Pia

+O.:u)+o-zu +p;l’o.2 '

Pis
we see that
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As described in the 1ISO/TAG4/WG3 "Guide to the Expression of Uncertainty in Measurement”, Type A estimates
are those that are evaluated by applying statistical methods to a series of repeated observations — a posteriori.
Type B estimates are other evaluations — subjective and otherwise — a priort.




= {X°(0.078 uV /°C) + (22.8 uV /°C)*(0.09°C)*
= x*(0.006 /°C*)+a.21 pV .

From this result, it is apparent that the maximum uncertainty occurs at the upper end of the
temperature range (x= 100 “C). Inserting this number in the expression for o, gives

( 0,=8.07uv . |

Obviously, the dominant term is the o,, term,

G.8.2 Interface 1(Reference Junction—Low Pass Filter)
The parameters for interface 1 are

Pa1 Interface loss factor
P22 Crosstalk
Ps Noise,

and the uncertainty is o, _\/a, +x*(a?, + o, )+ o, . Ordinarily, the standard deviations would
be estimated from heuristic data as was done In estlmatlng thermocouple uncertainty. However,
with the temperatures and frequencies under consideration in this example, these standard devi-

ations can be considered negligible relative to ;. Accordingly,

[ 02=0,=8,07 uV . (cumulative uncertainty) |

G.8.3 Low Pass Filter

Reiterating from earlier, the uncertainty in the output of the low pass filter is given by

Voi +(v7)' a3, I< 1.
o = \/(f_‘ff) [o§+(}’,°)2o§“]+(}:‘-f;J o2 fLsrsf, |
Or sz,

where

<
1

», — Filter attenuation uncertainty
», = Filter noise uncertainty

Y, =Y = pux.
0y =03 +(¥s) o2,

=0, +X*pj,0,

[ T

Q
11

Suppose that we have a specification for the non-linearity of the filter of $0.15% of input signal
level, From discussions with the manufacturer, we determine that these are 95% confidence lim-




its for the filter at the upper end of our frequency range (i.e., 10 Hz). We again assume a normal
distribution with zero mean for these errors and consult a table of normal deviates, where we find
that 95% confidence corresponds to about 1.960 standard deviations from the mean. The stan-
dard deviation for filter linearity errors Is thus

O piier = O, = ()1%%105 =7.7x107™" .

Consequently, the uncertainty in the low pass filier output is

03 =y2 +(v2) %,

s\/(8,07)2+(100)2(22,80)2 (5,86 x10-7) uv

[ =8.26 uV . (cumulative uncertainty) |

G.8.4 Interface 2 (Low Pass Filter—Amplifier)

The uncertainty in the signal input to the amplifier is given by

04 —‘Jas + pllx + a:u)+ a:&a !
where
o,, = Interface loss uncertainty
o,, = Crosstalk uncertainty
o,, = Interface noise uncertainty ,

We assume interface loss to be negligible, as is crosstalk and noise, Consequently,

| o,20,=826 4V . (cumulative uncertainty) |

G.8.5 Amplifier

The uncertainty in the amplifier output is

0 =\Pi(0h + 0}, + 03, +03,)+ (W) (6}, +o, +0/0)+0p *

where
o, -Amplifier gain uncertainty (includes process uncertainty)
0,. -Gain instability uncertainty
o,., =noma Mmode voltage uncertainty
o,. -Offset uncertainty
0,. -Amplifier non-linearity uncertainty
o,, -Common mode voltage uncertainty
o, =Amplifier noise uncertalnty
Y = paYs.

and where the uncertainty in the amplifier gain is given by

-—



c =\/(a° ) +x%02 +(T-T,) 02 .

z Pa Pas

Assume that we have the following specifications:

Ps1 (Amplifier gain) = 20 dB 10.5%

Pse (Gain instability error) = 10.25%

Pss (Normal mode voltage error) =0

Ds4 (Offset error) = £3.2 uv

Pss (Amplifier non-linearity error) =*0.02%

Pss (Common mode rejection error) = 40.002% of common mode input20
Ps7 (Amplifier noise level) = $2.5 uv

Common mode voltage =10 puv (maximum)

«(Thermal gain coefficient) = 2% /°C.

The amplifier manufacturer has assured us that these specification are made with 95% confi-
dence, corresponding to 1.960 standard deviations from the mean. Hence, noting that a 20 dB
amplitude gain represents a factor of 10 increase, the uncertainties are

6° =(,005)(10)/1.96 = .026

Psy

o,, =0.001

g, -0/iv

Cp.. 1.63 uv
c,, -L02X10*

e = 2%X107 UV

c, - '1.28;1V.

Psy

With regard to ancillary uncertainty, the ambient temperature is measured by a thermometer
with the specifications T 0.1 ‘C, 20.5% of reading. At 100 ‘C, this translates to

Temperature Tt\/(o.l’ +(.005 x100)2) ‘C
T1+0.51 “C.

If the error limits are stated with 95% confidence, then this specification corresponds to

n

okl
"1.96°
For this example, we will assume that o, = O. Then

°C=0.26 °C.

0, = V(0.026)* +(0.02)*(0.26)*
= 0.027,

i.e., the ancillary contribution to amplifier output uncertainty is small, but not negligible, The
total output uncertainty for this stage is

20 Based on a common mode rejection ratio of 120 dB.




0y = \/(IO)’[of +(163 V) + (2 X 10 wv)'+ (¥2)[0.027)* +0.001y'+ (1.02 x 104)]+ w28 uv)’

= {10} 267.3(uv)* + (0.027)*(¥?)" .

To a good approximation Y? = p,,x . Recalling that p,, -22.8 gv/°C, and that we are using the
maximum value of x = 100 “C, gives Y, = 2280 uV. Substituting this value” and the value
0,=8.26 uv, gives

o, =+100(8.26)2 + 265,7+ (0,027)’ (228072 uv

| =104.3 uV. (cumulative uncertainty) - |

G.8.6 Interface 3 (Amplifie—A/D Converter)

The uncertainty of the input to the A/D converter is

05 =02 +(¥9)'(02, + 02+ 02, .

.

where
o,, -Interface loss uncertainty
0., -A/D input crosstalk uncertainty
0,. = Interface noise uncertainty

Yy =Y{ = pgYs = PspX.

Assume the following for the interface:

Pey =-1% 10.1% of input signal (at 95% confidence)
P2 = 0
DPea = 0.

Thus we get for the interface 10ss uncertainty term:
0.0Q%

O, =-
* 1,960

Since Y = ps, Py x = (1 0)(2280) uV = 22,800 uV, note for future reference that Y, = 0.99Y; = 22,570
uv.

=51x10™" .

With these results, and using o, = 104,3 uVv ,we get

06 =1/(104.3)" + (22.800)%(5.1x10* ) v

| - =104.9 uv. (cumulative uncertainty) 1

G.8.7 Sampling (A/D Converter)

The expression for sampling uncertainty is

o = [+ o Joi + (2o, + 1+ sV foh, 0L 5 )} o2




where
0,, - DI/Aconvetter analog loss uncertainty
0,, = Aperature time uncertainty
0,, - Sampling rate uncertainty
Cp,. Quantization uncertainty
0,. - Linearity uncertainty
o,, - Noise uncertainty
Yo = Y9=paYs.

Assume the following specifications:
P71~ 0.5% +.05% (at 99% confidence)
P72 = (see below)
DPrs = (See below)

p74 = (see below)
D7 = 10.1% (at 99.73% confidence)
P = O uv.

The parameters p,,, p;3 and p;, are not, in themselves, of interest, Their uncertainties, which are
of interest, can be computed directly. Suppose that the D/A converter specifications include
Aperture time 1 msec
Sampling rate 200 Hz
Number of bits = 14
A/D full scale = 100 uv
Signal frequency =" 10 Haz.

Using these data with the methods of Appendix E yields

Aperture time 2710)(I77)=128)(104A
. Cp,, =
26

Sampling rate: o, =1.26x10*
Quantization: g, =(100/2"")/48uV =1 x10-'/W ,

Also, for p,;, and p;s, we have

o, =320 =~104 x10* |,

Py ) 57587
and
_0.001 _ 4
%o = 3000 =3.33x10™* .

Putting the numbers together yields the output of the D/A converter as

Y,= (0.995)Y, = 22,4604V , with




o, = \k104.9)2+(22.570)? [(1.94)2 + (0.128)"+(1.26)% +(3.33)2 | x10™® +(0.00176)? v

[ = 105,2 puVv. (cumulative uncertainty)

G.8.8 System Uncertainty
AS discussed earlier, the uncertainty in the output of the system is given by

O'U“"" £ \j(ps,pas)zd-? +x2[(al’u /pal)2 + (o-p., /psa)z]+ 0’37,, .

where
o,, = Data processor voltage to temperature conversion uncertainty
0,, = System resolution uncertainty
o,, = Error correction factor uncertainty

X = Measurand value = pg, pg,Y, .

The voltage to temperature conversion process is approximately the reciprocal of the temperature
to voltage conversion process encountered earlier. Thus

Ps, 21/22.8°C/ iV =0.044° C/ 4V , and

__05/22.8
T 2576

Suppose that the decimal output is given on a 100 “C scale to three significant digits. Then the
decimal resolution is

x(0.044)°C /1iV=3.75x10*°C / uV

100 “c
27 1000

and the resolution Uncertainty is

= 40.10 “c ,

o, =0.10/4/3°C=0.058 “C .

Pas

The error correction factor is obtained by attempting to compensate or correct for gains and
losses that occur in the measurement system, These are summarized as

Description Loss Error Uncertainty
Interface 1 ) 0 0
Low Pass Filter 0 0, 0
Amplifier 1000% (gain) 10.5% 0.027
Interface 3 1240 *0,1 % 5.1 X1 0-4
A/D Converter 0.5% 10.05% 1,94X1 O-4

From these data, the value of pgsIs estimated at




e e
® APy \14 Pey A1+ Py,

= (%)(519—9)(%95) =0.102 .

The analog error in this term is determined using the Taylor series method:

&(Pss) =—DPes

rs(ptﬁ + e(peﬁ + &(py) 1
L Ps1 1+DPa 1+ p,

Recall that the correction will be in the digital rather than analog domain, Thus a quantization er-
ror component must be added to this analog error, Using the result

Quantization uncertainty= (100/ 2“*')/ YB8uV = 1,76x 10™*uv

obtained in the analysis of A/D conversion uncertainty gives

Tro = Jpﬁ;{(am / pm)z +[o"" /(l + pfil)]2 +[GP1| /(l + pn )]2} +(U::mm)2

= \/ p:a[(0.027 /10)* + (51%10*/ 0.99)2 +(1.94x10* /7 0.995)°] + (1.76 X 107AV)’

= Pss(j0,003)'+ (1.76X 104V / pyy)°
= 0.003p,, .

Combining these results gives the total system uncertainty as*!

Oystem = \/(@Momozq?z;qaoaz)% (10[))2 (3.75 X10°/ o.044)2 + (O.OOSEI)Z+(O.058)2 °C

[ =1.02 °C . (total cumulative uncertainty) |

If it were desired to tolerance the system at 100 “C, using the NIST convention of multiplying the
uncertainty by a factor of 2, we would write

T=T,,. 1204 C, with approximately 95% confidence,

Note — The length of time that this uncertainty is applicable depends on the
stability of the various parameters of the system from which component uncer-
taintles were computed.
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Interestingly, the dominant term in the square root is the second term, which is driven by the uncertainty of
the system following the thermocouple. The first term, which is driven primarily by the uncertainty of the
thermocouple and has been dominant up to this point, is now subordinate,




G.9 Estimating the Process Uncertainty

The contribution of process uncertainties due to environmental error sources have been included
in the system uncertainty estimates developed above. The contribution of random sampling un-
certainties in system output will now be discussed.

As the 1S0 and NIST guidelines show, random sampling uncertainty can be estimated by taking a
sample of measurements and computing a sample standard deviation, Suppose that nvalues of
the output of the system are obtained by measurement of a fixed temperature. If each sampled
value is denoted y,,1=1,2, -+, n, then the mean of these values Is

zyi ,
1=1

=

=

and the sample standard variance is given by

1 & 12
32-:____ - .
n__lg(y( y)

The square root of the sample variance is the sample standard deviation, This quantity can be
used to represent the uncertainty due to short-term random fluctuations in the output of the
system. This uncertainty does not exactly characterize the precision uncertainty of the system
but, rather, applies to precision uncertainties in single measurements made using the system,

An estimate that better serves the purpose of representing the characteristic precision of the sys-
tem is the sampling standard deviation given by

Seysiem =S/ .

G.1 O Estimating the Total Uncertainty

The total uncertainty is obtained by combining bias and precision uncertainty components:

~ 2 2
Ootat = \[Oayetom + Siampic

The equality is only approximate, since the sampling standard deviation is only an estimate of the
“true” precision uncertainty in the output of the measuring system,

Before leaving this example, it will be worthwhile to make a few observations about the bias and
precision parts of the total uncertainty. The precision uncertainty s,,... 1s a quantity that de-
pends on the stability’ of the system to short-term environmental and other stresses and on the
vagaries of the measurement process,

The quantity o,,,,. on the other hand, represents the uncertainty in the bias of the system. The
various component uncertainties that were used in determining this quantity were estimated us-
ing error limits based on specifications. In each case, the error containment probability of the er-
ror limits was employed, These containment probabilities may change with time. Likewise, the
bias uncertainty of the system maybe time varying. For this reason, it is always a good practice
to write




‘total (t) =/cmltish..

where the variable t indicates the time-dependence of the system bias uncertainty.




H.1 The SI

The S1 or modem metric system is a universally accepted system of units, It was adopted in 1960
by the General Conference of Weights and Measures (CGPM) to harmonize physical measurement
throughout the world, It is a dynamic system that is continually evolving to meet measurement
needs. The S1 defines classes of units; establishes names, symbols, and prefixes (multipliers) for
the units: and addresses other matters important to ensuring measurement accord. Also, NIST,
the International Standards Organization (I SO), and the American National Standards Institute
(ANSI) have published detailed information about the system and it's use, Although nearly uni-
versal, there are small variations between nations, These differences are mostly in the spelling of

certain units and other minor matters. Both the NIST and ANSI documents are the United States’
interpretation of the S1.

H.2 S| Units

Three classes of units were established, base units, supplemental units, and derived units. The
system has been constructed so that, it is coherent, That is, all units derived from the base units
and other derived units are themselves units that have the implied multiplier one (1.)

H.2. | Base Units

Seven base units were chosen by convention and are regarded as dimensionally independent,
Each, except the kilogram, is defined in terms of a physical phenomenon or constants of nature.
For example: the meter is the length of the path traveled by light during an interval of 1/299 792
458 of a second. The interval is the reciprocal of the speed of light in vacuum, The kilogram is a
carefully preserved artifact residing at the Bureau of International Weights and Measures (B IPM.)
Also, it is the only unit that includes a prefix, “kilo”, in its name, All other units are derived in
terms of these seven (and two supplementary units discussed later.) Table H.1 lists the base units.
The term “quantity” used in the heading of this and other tables means measurable attribute of
phenomena or matter. For each quantity in Table H., there is a S1 unit name and symbol,

TABLE H.1
S/Base Units
Quantity Name Symbol
amount of substance mole mol
electric current ampere A
length meter m
luminous intensity candela cd
mass kilogram kg
thermodynamic temperature kelvin K
time second .8




H.2.2

Supplementary Units

CGPM adopted two supplementary units, the S1 unit of plain angle and the S1 unit of solid angle.
Plane angle is generally expressed as the ratio between two lengths and solid angle the ratio be-
tween an area and the square of length. Both are dimensionless derived quantities. Table H.2

gives the particulars on both.

TABLE H.2

8! Supplementary Units
Quantity Name
plane angle radian
solid angle steradian

H.2.3 Derived Units

Derived units are expressed algebraically in terms of base units by the mathematical symbols of
multiplication and division, Because the system is coherent, the product or quotient of any two
quantities is the unit of the resulting quantity. Table H.3 gives several exampies of derived ‘units

expressed exclusively in base units,

Expression In Terms

Symbol of 81 Basp1 Units
rad mem’ =1
sr m2em2=1

TABLE H.3

Quantity

area

volume

speed, velocity
acceleration

wave number

density, mass density
specific volume
current density
magnetic field strength

[luminance

concentration (of amount Of substance)

Examples of S/ Derived Units Expressed in Base Units

Name Symbol
square meter m?
cubic meter m3
meter per second m/s
meter per second squared m/s?
reciprocal meter m-!
kilogram per cubic meter kg/m’
cubic meter per kilogram m3/kg
ampere per square meter A/m’
ampere per meter A/m
mole per cubic meter mol/m3
candela per square meter cd/m?

Certain derived units have been given special names and symbols were established. They may
themselves be used to express other derived units. In Table H.4 the name, symbol, and
expression in terms other units and the base units are given for each.




TABLE H.4

Derived Units with Special Names
Expresslon In Terms Expression In ‘Terms

Quantity Name Symbol  of Other Units of S/ Base Units
frequency hertz Hz s’
force newton N m e kg e 52
pressure, stress pascal Pa N/m’ m!. kg - g2
energy, work, joule J Nem m2e kg ¢ 52
quantity of heat
power, radiant flux watt w J/s m2. kg . s
electric.ch?;qe, ~ coulomb c Se*A
quantity o electricity
electric . ofential, Vott v W/A m2e Kg.g3¢ Al
g%g rgg!:c%{/fgr oroe
capacitance farad F c/v m2ekglegie A2
electric resistance ohm Q V/A m”*.kg.s?>. a2
glectric conductance  siemens SA/V m2ekglegde A2
magnetic flux weber Wb V*S m2e kges2eAl
magnetic flux density tesla T Wb/m? kges2e Al
inductance henry H Wb/A m2.-Kg o 52. A2
Celsius temperature ® degree Celsius “C K
luminous flux lumen Im cdesr®
illuminance lux Ix Im/m? m2.cd .sr @
activity (of a radionuclide) becquerel Bq s’
absorbed dose, gray Gy J/kg m?2-S-2

_ Specific inergy
imparteg. kerma, .
apbsggd dose index

dose equivalent, sievert Sv J/Kg m?2 - s2
dose equivalent index

@ Besides the thermodynamic temperature (symbol T expressed in kelvins (see Table H. 1), use is also
made. of the Celstus temperature (symbol § defined by the equation t = T-T, where 7,.273. 15K by
definition. To express Celsiustemperature, the unit ‘degree Celsius’ which isequal to the unit
*kelvin® isused; here “ degr ee Celsfus” is a special nameused for’ -kelvin”. An interval of difference of
Celsius temperature can, however, be expressed in kelvins and in degrees Celsius.

@ In photometry, the symbol sr 18 maintained in expressfons for units.




Tab H.5 gives some examples of derived units expressed by special names,

TABLE H.5
Examples of 8! Derived Units Expressed by Special Names !
Expresslon in Terms
Quantity Name Symbol of Other Units
dynamic viscosity ~ pascal second pas m!. gg. sl
moment of force newton meter Nem m?2e kg e 572
surface tension newton per meter N/m kg ¢ 52
heat flux density, watt per square meter W/m* kg - 82
irradiance
heat capacity, entropy joule per kelvin J/K m?s kg e s2e K’
specific Qﬁatrgappacny, joule per kilogram kelvin J3/(kg. K) m2es2e K1
specific energy joule per kilogram J/kg m? - s2
thermal conductivity ~ watt per meter kelvin W/(m .K) mekge s3eK!
energy density joule per cubic meter J/ms m! kg-.s?
electric field strength  volt per meter V/m mekges3eAl
electric charge density coulomb per cubic meter c/m’ m3eseA
electric flux density coulomb per square meter C/m? m2eseA
permittivity farad per meter F/m m3ekglesgie A
permeability henry per meter H/m mekges2eA?
molar energy joule per mole J/mol  m2e Kg. 52 ¢ mot!
molar entropy, joule per mole kelvin J/(moleK) m2skges-2eK- lemol- 1
molar heat capacity
exposure (x and ) coulomb per kilogram c/kg kglese A
absorbed dose rate  gray per second Gyl/s m’®.s”
t See ANSI Std. 26S- 19S2, Table 4, for more derived units.

A unit name may correspond to several different quantities, In the previous tables, there are sev-
eral examples. The joule per kelvin (J/ K) is the S1 unit for the quantity heat capacity and for the
guantity entropy (Table H.5.) The name of the unit is not sufficient to define the quantity mea-
sured. Specifically, measuring instruments should indicate not only the unit but also the mea-
sure quantity concerned.




H.2.4 Other Units

Certain units are not part of the S1 but are important and widely used. The International
Conference of Weights and Measures (CIPM) recognized the need for these units because of their
importance, The units in this category accepted for use in the United States with the S1 are listed
in Table H.6. The combination of units of this table with S1 units to form compound units should
be restricted to special cases in order not to lose the advantage of coherence, Examples of com-
bining the units of Table H.6 with S1 units are ampere hour (A . hr) kilowatt hour (kW. hr), kilo-
meter per hour (km / hr), etc. The corresponding coherent S1 units are coulomb (C), ule (J), and
meter per second (m /s) respectively.

TABLE H.6

Units in Use With the SI

Name Symbol Value In 8/ Unit

minute (time) min 1min=60s

hour h 1h =60min=3600s

day d 1d=24 h=286,400s

degree (angle) 0 1 = (m/180) rad

minute (angle) ® ' 1' = (1/60)° = (n/10,800) rad
second (angle) ° - 1“ = (1/60)' = (n/648,000) rad
liter @ L 1L=1dm=10°m®

metric ton ® t 1t=10 kg

electron voit ® eV 1eV = 1.602 19x 10" J, approx.
unified atomic mass unit u 1 u = 1.66057x 10?7 kg, approx.

® Use discouraged except for special fields such as cartography,

@ Both L and 1am internationally accepted symbols for liter. Because *I" can be
confused wtth the numeral “1”, the symbol “L” isrecommended for the United states.
ANSI/IEEE Std 2ss- 19S2 states: ‘The usc of this unit isrestricted to volumetrie,
capacity, dry measure, and measur e of fluids (both liquids and gases.) No prefix other
than milli- or micro- should be used wtth liter”.

@ In many countries, thisunit is called “tonne”.

@® The values of these units expressed in terms of the S1 units must be obtained by

experiment, and therefore, are not known exactly. Theelectronvolt is the kinetic ener
acqunreg%y an electron passing through a potertial cﬂ?ference ofol voft In vacuum. Tﬂ)é

untfted atomic mass |a equal to (1/12) of the mass of the atom of the nuclide12¢,




H.3 Units in Temporary Use

in those fields where their usage is well established, the use of the units in Table H.7 for alimited
time is accepted, subject to future review. These units should not be introduced where they are
not presently in use,

Units in Temporary Use With S/

angstrém are (unit of land area) bar

barn curie gal (unit of acceleration)
knot nautical mile rad (unit of absorbed dose)

rem (unit of dose equivalent)  roentgen

H4  Obsolete Units

The 1990 Federal Register notice lists several units listed in Section 2 of the act of July 28, 1866
no longer accepted for use in the United States, They are myriameter, stere, millier, tonneau,
quintal, myriagram, and kilo (for kilogram,) Also, CIPM has recommended that several units in
common use be avoided. Table 12 of NBS SP-330 (1986) lists a number in temporary use, Lastly,
the CIPM recognizes the centimeter-gram-second (CGS) system of units and the special names
but urge they no longer be used,

H.5 Rules for Writing and Using Symbols

The general principles for writing unit symbols were adopted by the CGPM:

(1) Roman (upright) type, generally, lower case, is used for the unit symbol, If however, the
name of the unit is derived from a proper name, the first letter of the symbol is in upper
case.

(2) Unit symbols are unaltered in the plural.
(3) Unit symbols are not followed by a period,

To insure uniformity in the use of S1 unit symbols, ISO has made certain recommendations. They
are:

(@ The product of two or more units maybe shown in any of the following ways*
for example Nom, N.m, or N m.

(b) A solidus (oblique stroke, /), a horizontal line, or negative exponent maybe used to
express a derived unit formed by two others by division,

22 From footnote on page 9 of NBS SP330 (1986). “See American National Standard ANSI/IEEE Std 260-1$178,
which states that in USA practice only the ratsed dot of these three ways is used.”




m 2

Jor example: . m/s, L Or mes™,

(@ The solidus must not be repeated on the same line unless ambiguity is avoided by

parentheses. Uncomplicated cases negative exponents or parentheses should be
used,

Jor example

m/s2

or mes' butnot m/s/s
m.kg/(s3.A) or mekges SeA™! butnot mekg/s3/A .

H6 Sl Prefixes

CGPM adopted a series of prefixes and symbols of prefixes for names and symbols of the decimal
multiples and sub-multiples of S1 units. They are given in Table H.8.

TABLE H.8

S/Prefixes

Factor  Prefix  Symbol Factor Prefix Symbol
1078 exa E 1077 deci d
10'° pets P 102 centi ‘
102 tera T 10°° milli m
109 gigs G10 -6 micro M
106 mega M 10 9 nano n
10° kilo k 1012 pico p
107 hecto h 107 femto f
107 deka tda 1018 atto a
1 The spelling “deca” is used extensively outside the United States,

In accord with the general principles adopted by the 1S0, the CIPM recommends certain rules for
using the S1 prefixes, They are:

(1) Prefix symbols are printed in Roman (upright] type without spacing between the prefix
and the unit symbol,

(2) The grouping formed by a prefix symbol attached to the unit symbol is a new inseparable

symbol that can be raised to a positive or negative power and that can be combined with
other unit symbols to form compound unit symbols,

3
Jor example: lem3 = (1 072 m) =10"%m3

1V/cm=(1/V) /(10'2m)=102V/m .

(3) Compound prefixes formed by the juxtaposition of two or more S1 prefixes are not to be
used,

Jor example

Inm but not Imum.




(4) A prefix should never be used alone. i
(5) Errors in calculations can be avoided easily by replacing the prefixes with powers of 10.

Deflnittve discussions of prefix rules and the use of exponents are found in ANSI/IEEE Std 268-
1982, NBS Special Publication 330 (1986 edition), and ISO Standard Handbook 2 (1982 edition,)
AU three of these documents are revised occasionally and the most recent versions take prece-
dence,

H.7 Conversion to Metric

It will be necessary to convert many units from those in current use In the United States to met-
ric. Such conversion can be carried out using Eq. (5,2) and a knowledge of the relationship be-
tween the two 64 / 6. Be Careful, as serious errors Often happen when making conversions.
ANSI/IEEE Std 268-1982 list many conversion factors to obtain the S1 units (but not the reverse.)
The standard also provides rules for conversion and rounding. There are two facets of this prob-,
lem—the conversion proper and handling any associated tolerance,
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